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Example 9.19
A simulation of the web-based trading site of a stock broker includes the time between arrivals of orders to
buy and sell. Investors tend to react to what other investors are doing, so these buy and sell orders arrive in
bursts. Therefore, rather than treat the time between arrivals as independent random variables, a time-series
model should be developed.

We distinguish multivariate input models of a fixed, finite number of random variables (such as the two
random variables lead rime and annual demand in Example 9.18) from time-series input models of a (con-
ceptually infinite) sequence of related random variables (such as the successive times between orders in
Example 9.19). We will describe input models appropriate for these examples after reviewing two measures
of dependence, the covariance and the correlation.

9.7.1 Covariance and Correlation

Let X, and X, be two random variables, and let u, = E(X ) and G“ = V(X,) be the mean and variance of
X, reepeetlvely The covariance and correlation are measures of the linear dependence between X, and X,.
In other words, the covariance and correlation indicate how well the relationship between X, and X, is
described by the model

(X, —u) = ﬂ(xz —U,)+e

where € is a random variable with mean 0 that is independent of X,. I, in fact, (X, — u ) = B (X, — u,). then
this model is perfect. On the other hand, if X, and X, are @tansncally independent, then =0 and the model
is of no value. In general, a positive value ofﬁ mdlcates that X, and X, tend to be above or below their means
together; a negative value of f indicates that they tend to be on opposite sides of their means.

The covariance between X and X, is defined to be

cov(X,X,)=E[(X, —u XX, - 1,)] = E(X X)) —u, u, (9.22)

The value cov(X |, X,) = 0 implies =0 in our model of dependence, and cov(X,, X,) <0 (>0) implies <0 (>0).
The covariance can take any value between —e and . The correlation standardizes the covariance to be
between —1 and 1:

X, X,
p=:corr(Xl,Xz)=M (9.23)
g, 0,

Again, the value corr(X,, X,) = 0 implies 8= 0 in our model, and corr(X . X,) < 0 (>0) implies § < 0 (>0).
The closer pisto—1 or 1, the stronger the linear relationship is between X and X,.

Now suppose that we have a sequence of random variables X 1» X5, X5, ... that are identically distributed
(implying that they all have the same mean and variance), but could be dependent We refer to such a
sequence as a time series and to cov(X, X, ,) and corr(X,, X, ,) as the lag-h autocovariance and lag-h auto-
correlation, respectively. If the value of the autocovariance depends only on 4 and not on ¢, then we say that
the time series is covariance stationary; this concept is discussed further in Chapter 11. For a covariance-

stationary time series, we use the shorthand notation

p, =corr(X, X, ,)

for the lag-h autocorrelation. Notice that autocorrelation measures the dependence between random variables
that are separated by 4 — 1 others in the time series.
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9.7.2 Multivariate Input Models

If X, and X, each are normally distributed, then dependence between them can be modeled by the bivariate
normal distribution with parameters it . ft,. 6%, 63 and p = corr(X,, X,). Estimation of y,, 1, 0}, and 03 was
described in Section 9.3.2. To estimate p, suppose that we have n independent and identically distributed
pairs (X, X, ). (X5, X5,), ..., (X, X,,). Then the sample covariance is

in?

1j _il)(x'lj _)?z)

c&(x,,xz)=¥[i(x

j=1

l n _
=_I_[Zx”le—nx,x3 (9.24)
n— i=1

where }?] and X . are the sample means. The correlation is estimated by

5 cov(X,, X,) (9.25)
6,6,

where &, and 6, are the sample variances.

Example 9.20: Example 9.18 Continued
Let X, represent the average lead time to deliver (in months), and X, the annual demand, for industrial robots.
The following data are available on demand and lead time for the last ten years:

lead time demand
6.5 103
4.3 83
6.9 116
6.0 97
6.9 112
6.9 104
5.8 106
73 109
4.5 92
6.3 96

Standard calculations give X, =6.14, 6, =1.02, X, =101.80, and &, = 9.93 as estimates of U, O, 1y,
and 0,. respectively. To estimate the correlation, we need

10
> X, X, =63285

J=l

Therefore, cov = [6328.5—(10)(6.14)(101.80)] /(10 — 1) = 8.66, and

8.66

p=— =0.86
(1.02)(9.93)

Clearly, lead time and demand are strongly dependent. Before we accept this model, however, lead time and
demand should be checked individually to see whether they are represented well by normal distributions.
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In particular, demand is a discrete-valued quantity, so the continuous normal distribution is certainly at best
an approximation.
The following simple algorithm can be used to generate bivariate normal random variables:

Step 1. Generate Z, and Z,, independent standard normal random variables (see Section 8.3.1).

Step 2. Set X, = u, + 0,Z,

Step 3. Set X, = u, +0, (pZ, +41 —pz—Zz)

Obviously, the bivariate normal distribution will not be appropriate for all multivariate-input modeling
problems. It can be generalized to the k-variate normal distribution to model the dependence among more
than two random variables, but, in many instances, a normal distribution is not appropriate in any form. We
provide one method for handling nonnormal distributions in Section 9.7.4. Good references for other mod-
els are Johnson [1987] and Nelson and Yamnitsky [1998].

9.7.3 Time-Series Input Models

If X, X,, X, ... is a sequence of identically distributed, but dependent and covariance-stationary random vari-
ables, then there are a number of time series models that can be used to represent the process. We will
describe two models that have the characteristic that the autocorrelations take the form

h

ph = COrr(X,, Xt+h) = p

for h = 1, 2. ... Notice that the lag-h autocorrelation decreases geometrically as the lag increases. so that
observations far apart in time are nearly independent. For one model to be shown shortly, each X, is normally
distributed; for the other model, each X, is exponentially distributed. More general time-series input models
are described in Section 9.7.4 and in Nelson and Yamnitsky [1998].

AR(1) MODEL. Consider the time-series model
X, =u+o(X,_ — ) +E, (9.26)

for t =2, 3, ..., where &, €, ... are independent and identically (normally) distributed with mean 0 and
variance 0}, and —1 < ¢ < 1. If the initial value X, is chosen appropriately (see shortly), then X, X,, ... are

all normally distributed with mean , variance o} /(1-¢°), and
ph — ¢h

for h =1, 2, .... This time-series model is called the autoregressive order-1 modecl. or AR(1) for short.
Estimation of the parameter ¢ can be obtained from the fact that

o= p'=corr(X,.X,.,)

the lag-1 autocorrelation. Therefore, to estimate ¢, we first estimate the lag-1 autocovariance by

— = _ .
cov(X,. X, )= —— (%, -XX,., - X)

1=1

n=l
= l ( XX“]_(,I_I)XZ) (927)

t
n—1\"5
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and the variance ¢? = var(X) by the usual estimator 62. Then

(?J= cov(X,. X))

Finally, estimate u and o7 by ji= X and

respectively.
The following algorithm generates a stationary AR(1) time series, given values of the parameters ¢, u,
and 02
&

Step 1. Generate X, from the normal distribution with mean g and variance of /(1—¢%). Sett=2.
Step 2. Generate ¢, from the normal distribution with mean 0 and variance 2.
Step 3. Set X =u+ ¢ (X _, — ) +¢€,.
Step 4. Set 1 =1+ | and go to Step 2.
EAR(1) MODEL. Consider the time-series model

th -
¥ - oX, |, wit probabllfty ¢ (9.28)

¢X, ,+ €, with probability 1 - ¢
forr=2,3. ..., where €, €, ... are independent and identically (exponentially) distributed with mean 1/4

and 0 < ¢ < 1. If the initial value X, is chosen appropriately (see shortly), then X, X,, ... are all exponen-
tially distributed with mean 1/4 and

ph — ¢h

for h=1, 2, .... This time-series model is called the exponential autoregressive order-1 model, or EAR(1) for
short. Only autocorrelations greater than O can be represented by this model. Estimation of the parameters

proceeds as for the AR(1) by setting ¢ = g, the estimated lag-1 autocorrelation, and setting } =1/ ¥.
The following algorithm generates a stationary EAR(1) time series, given values of the parameters
¢ and A:

Step 1. Generate X, from the exponential distribution with mean 1/A. Set t = 2.

Step 2. Generate U from the uniform distribution on [0, 1]. If U < ¢, then set

X =0X

I3 =1
Otherwise, generate £ from the exponential distribution with mean 1/A and set
X, =¢X _ + ¢

Step 3. Setr =7+ 1 and go to Step 2.
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Example 9.21: Example 9.19 Continued
The stock broker would typically have a large sample of data, but, for the sake of illustration, suppose that
the following twenty time gaps between customer buy and sell orders had been recorded (in seconds): 1.95,
1.75,1.58, 1.42, 1.28, 1.15, 1.04, 0.93, 0.84, 0.75, 0.68, 0.61, 11.98, 10.79. 9.71, 14.02. 12.62. 11.36, 10.22,
9.20. Standard calculations give X =5.2 and &* = 26.7. To estimate the lag-1 autocorrelation, we need

19
Y XX, =941
j=1

Thus, cov = [924.1-(20~1)(5.2)*}/(20~1) = 21.6, and

o

n 1.6
=——=0.8
P 6.7

Therefore, we could model the interarrival times as an EAR(1) process with i =1/52=0.192 and (B: 0.8,
provided that an exponential distribution is a good model for the individual gaps.

9.7.4 The Normal-to-Anything Transformation

The bivariate normal distribution and the AR(1) and EAR(1) time-series models are useful input models that
are easy to fit and simulate. However, the marginal distribution is either normal or exponential, which is cer-
tainly not the best choice for many applications. Fortunately, we can start with a bivariate normal or AR(1)
model and transform it to have any marginal distributions we want (including exponential).

Suppose we want to simulate a random variable X with cdf F(x). Let Z be a standard normal random
variable (mean 0 and variance 1), and let d(z) be its cdf. Then it can be shown that

R=®(2)

is a U(0, 1) random variable. As we learned in Chapter 8, if we have a U(0, 1) random variable, we can get
X by using the inverse cdf transformation

X =F"[R]=F'[®(2)]

We refer this as the normal to anything transformation, or NORTA for short.

Of course, if all we want is X, then there is no reason to g0 to this trouble; we can just generate R directly,
using the methods in Chapter 8. But suppose we want a bivariate random vector (X, X,) such that X, and X,
are correlated but their distributions are not normal. Then we can start with a bivariate normal random vec-
tor (Z,, Z,) and apply the NORTA transformation to obtain

X, = F'[®(Z,)] and X, = F;'[®(Z,)]

There is not even a requirement that F; and F, be from the same distribution family: for instance, F; could be
an exponential distribution and F, a beta distribution.
The same idea applies for time series. If Z,is generated by an AR(1) with N(0, 1) marginals, then

X =F'[®Z))
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will be a time-series model with marginal distribution F(x). To insure that Z is N(0, 1), we set 4 = 0 and 0[2 =
1 — ¢* in the AR(1) model.

Although the NORTA method is very general, there are two technical issues that must be addressed to
implement it:

1. The NORTA approach requires being able to evaluate that standard normal cdf, ®(2), and the inverse
¢df of the distributions of interest, F~'(«) . There is no closed-form expression for ®(z) and no closed-
form expression for F~'(u) for many distributions. Therefore, numerical approximations are required.
Fortunately, these functions are built into many symbolic calculation and spreadsheet programs, and
we give one example next. In addition, Bratley, Fox, and Schrage [1987] contains algorithms for many
distributions.

2. The correlation between the standard normal random variables (Z,. Z,) is distorted when it passes
through the NORTA transformation. To be more specific, if (Z,, Z) have correlation p, then in

NORTARho := proc(rhoX, n)
local 2z1, 22, Ztemp, X1, X2, R1, R2, rho, rhoT, lower, upper;
randomize (123456} ;

Z1 := [random[normald[0,1]] (n)}:
ZTemp := [random[normald[o0,1]] (n)]:
z2 := [0]:
# set up bisection search
rho := rhoX:
if (rhoX < 0) then
lower := -1:
upper := 0:
else
lower := O:
upper := 1:
£
Z2 := rho*zl + sgrt(l-rho”2)*ZTemp:
R1 := statevalf [cdf,normald(0,1]](Z21):
R2 := statevalf [cdf,normald{0,1]] (Z22)
X1 := statevalf{icdf,exponentialil,0]] (K1) :
X2 := statevalf [icdf,betall,2]](R2):
rhoT := describe{linearcorrelation]} (X1, X2);

# do bisection search until 5% relative error
while abs (rhoT rhoX) /abs (rhoX) > 0.05 do
if (rhoT > rhoX) then

upper := rho:
else
lower := rho:
fi:
rho := evalf{{lower + upper)/2):
Z2 := rho*Zl + sqrt(l—rho*z)*ZTemp:
R1 := statevalf (cdf,normald(0,1]]
R2 := statevalf [cdf,normald[0, ]](Z2
X1 := statevalf[icdf,exponential[l,O]](Rl):
X2 := statevalf [icdf,beta(l,2]] (R2)
rhoT := describe[linearcorrelation] (X1, X2);
end do;
RETURN (rho) ;

end;

Figure 9.6 Maple procedure to estimate the bivariate normal correlation required for the NORTA method.
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general X, = F'[®(Z))] and X, = F,'[®(Z,)] will have a correlation p, # p. The difference is
often small, but not always.

The second issue is more critical, because in input-modeling problems we want to specify the bivariate
or lag-1 correlation. Thus, we need to find the bivariate normal correlation p that gives us the input correla-
tion p, that we want (recall that we specify the time series model via the lag-1 correlation, p, = corr(X,. X, ).
There has been much research on this problem, including Cario and Nelson [1996, 1998] and Biller and
Nelson [2003]. Fortunately, it has been shown that p, is a nondecreasing function of p, and p and p, will

always have the same sign. Thus, we can do a relatively simple search based on the following algorithm:

Step 1. Set p = p, to start.

Step 2. Generate a large number of bivariate normal pairs (Z,, Z,) with correlation p, and transform them
into (X,, X,)’s, using the NORTA transformation.

Step 3. Compute the sample correlation between (X,, X,), using Equation (9.24). and call it p,. If pr> Py
then reduce p and go to Step 2; if Py < Py, then increase p and go to Step 2. If P, = Py then stop.

Example 9.22
Suppose we needed X, to have an exponential distribution with mean 1, X, to have a beta distribution with
B, =1, B,=1/2, and the two of them to have correlation p, = 0.45. Figure 9.6 shows a procedure in Maple
that will estimate the required value of p. In the procedure, n is the number of sample pairs used to estimate
the correlation. Running this procedure with n set to 1000 gives p = 0.52.

9.8 SUMMARY

Input-data collection and analysis require major time and resource commitments in a discrete-event simula-
tion project. However, regardless of the validity or sophistication of the simulation model, unreliable inputs
can lead to outputs whose subsequent interpretation could result in faulty recommendations.

This chapter discussed four steps in the development of models of input data: collecting the raw
data, identifying the underlying statistical distribution, estimating the parameters. and testing for goodness
of fit.

Some suggestions were given for facilitating the data-collection step. However. experience, such as that
obtained by completing any of Exercises I through 5. will increase awareness of the difficulty of problems
that can arise in data collection and of the need for planning.

Once the data have been collected, a statistical model should be hypothesized. Constructing a histogram
is very useful at this point if sufficient data are available. A distribution based on the underlying process and
on the shape of the histogram can usually be selected for further investigation.

The investigation proceeds with the estimation of parameters for the hypothesized distribution.
Suggested estimators were given for distributions used often in simulation. In a number of instances. these
are functions of the sample mean and sample variance.

The last step in the process is the testing of the distributional hypothesis. The ¢ — ¢ plot is a usetul
graphical method for assessing fit. The Kolmogorov—Smirnov, chi-square, and Anderson—Darling good-
ness-of-fit tests can be applied to many distributional assumptions. When a distributional assumption is
rejected, another distribution is tried. When all else fails. the empirical distribution could be used in the
model.

Unfortunately, in some situations, a simulation study must be undertaken when there is not time or
resources to collect data on which to base input models. When this happens. the analyst must use any available
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information—such as manufacturer specifications and expert opinion—to construct the input models. When
input models are derived without the benefit of data, it is particularly important to examine the sensitivity of
the results to the models chosen.

Many, but not all, input processes can be represented as sequences of independent and identically dis-
tributed random variables. When inputs should exhibit dependence, then multivariate-input models are
required. The bivariate normal distribution (and more generally the multivariate normal distribution) is often
used to represent a finite number of dependent random variables. Time-series models are useful for repre-
senting a (conceptually infinite) sequence of dependent inputs. The NORTA transformation facilitates devel-
oping multivariate-input models with marginal distributions that are not normal.
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EXERCISES

1.

el A

10.
11.
12,

13.

In a college library, collect the following information at the books return counter:

arrival of students for returning books
service time taken by the counter clerk

Consolidate the data collected and verify whether it follows any standard distribution. (Prior permission
from concerned authorities may be required.)

Go to a bank having single window operation. Collect information on arrival of customers, service
time, etc. The type of transaction may vary from customer to customer. From service times observed,
classify according to the type of transaction and fit arrival and service parameters separately for each
type of transaction. (Prior permission from concerned authorities may be required.)

Go to a major traffic intersection, and record the interarrival-time distributions from each direction.
Some arrivals want to go straight, some turn left, some turn right. The interarrival-time distribution
varies during the day and by day of the week. Every now and then an accident occurs.

Go to a grocery store, and construct the interarrival and service distributions at the checkout counters.
These distributions might vary by time of day and by day of week. Record, also, the number of service
channels available at all times. (Make sure that the management gives permission to perform this study.)

Go to a laundromat, and “relive” the authors’ data-collection experience discussed in Example 9.1.
(Make sure that the management gives permission to perform this study.)

Draw the pdf of normal distribution with u = 6, o= 3.
On one figure, draw the pdfs of the Erlang distribution where 6= 1/2 and k=1, 2, 4, and 8
On one figure, draw the pdfs of the Erlang distribution where 6 =2 and k=1, 2, 4, and 8.
Draw the pdf of Poisson distribution with & = 3, 5, and 6.
Draw the exponential pdf with A = 0.5. In the same sheet, draw the exponential pdf with A = 1.5.
Draw the exponential pdf with A = 1. In the same sheet, draw the exponential pdf with 1 = 3.
The following data are generated randomly from a gamma distribution:

1.691 1437 8.221 5.976

1.116 4435 2345 1.782

3810 4.589 5313 1090

2649 2432 1.581 2.432

1.843 2466 2.833 2.361
Compute the maximum-likelihood estimators [Ai and 6.

The following data are generated randomly from a Weibull distribution where v = 0:

7936 5224 3937 6.513
4599 7.563 7.172 5.132
5.259 2759 4278 2.696
6.212 2407 1857 5.002
4612 2.003 6.908 3.326
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Compute the maximum-likelihood estimators & and [3 (This exercise requires a programmable calcu-
lator, a computer, or a lot of patience.)

14. Time between failures (in months) of a particular bearing is assumed to follow normal distribution. The
data collected over 50 failures are

11.394  10.728 6.680 8.050 8.382
8.740 8.287 7.979 5.857 13.521
12.000 9.496 9.248 6.529 12.137
11.383 8.135 11.752 10.040 8.615
8.686 6.416 9.987 11.282 4.732
9.344 7.019 6.735 12.176 4.247
10.099 6.254 5.557 9.376 5.780
7.129 7.835 9.648 4.381 5.801
8.334 9.454 8.486 7.256 10.963
10.544  10.433 10.425 10.078 7.709

Using Kolmogorov-Smirnov test, check whether the distribution follows normal.
15. Show that the Kolmogorov-Smirnov test statistic for Example 9.16 is D = 0.1054.

16. Records pertaining to the monthly number of job-related injuries at an underground coalmine were
being studied by a federal agency. The values for the past 100 months were as follows:

Injuries per Month Frequency of Occurrence
0 35
1 40
2 13
3 6
4 4
5 |
6 1

(a) Apply the chi-square test to these data to test the hypothesis that the underlying distribution is
Poisson. Use the level of significance o = 0.05.

(b) Apply the chi-square test to these data to test the hypothesis that the distribution is Poisson with
mean 1.0. Again let a=0.05.

(¢) What are the differences between parts (a) and (b), and when might each case arise?

17. The interarrival time of tools for repair to a service station is assumed to follow exponential with A = 1.
The data collected from 50 such arrivals are

1.299  0.234 1.182 0.943 0.038
0.010 2.494 1.104 0.330  0.324
0.059 1.375 1.660 1.748 0.706
2.198 0.537 0.904 1.910  0.387
3.508 2784  0.237 1.137  0.990
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1.002
1.000
0.861
0.812
0.465

Based on appropriate test. check whether the assumption is valid.

18. The time spent by customers (in minutes) based on a study conducted in the college canteen is

13.125
14.151
16.365
13.650
13.763
16.643
21.285
12.995
14.300
18.778

1.594
0.143
1.952
1.035
0.451

12.972
17.541
18.946
15.336
18.518
16.712
13.299
19.540

8.497
11.186

0.404
0.697
0.016
0.688
0.507

18.985
17.251
11.154
16.990
16.493
12.759
16.589
17.761
19.149
16.263

1.467
0.442
0.167
0.565
0.224

12.04]
13.400
11.159
18.265
15.869
14.926
13.887
16.290
14.035
14.438

0.905
0.395
2.245
0.155
1.441

14.658
15.559
14.883
18.719
13.291
14.412
15.853
14.624
17.076
15.741

Using appropriate methods, determine how the time is distributed.

19. The time required for the transmission of a message (in minutes) is sampled electronically at a communi-
cations center. The last 50 values in the sample are as follows:

7.936
4.599
5.259
6.212
8.761
3.785
3.535
3.502
5.289
4.646

How are the transmission times distributed? Develop and test an appropriate model.

20. The time spent (in minutes) by a customer in a bus stop awaiting to board a bus is

1.07
7.19
6.62
11.27
7.28

4.612
5.224
7.563
2.759
4.502
3.742
5.061
4.266
6.805
5.963

10.69
16.25
6.10
3.00
14.12

2.407
2.003
3.937
7.172
6.188
4.682
4.629
3.129
3.827
3.829

11.81
12.32
20.21
12.53

7.59

4.278
1.857
6.908
6.513
2.566
4.346
5.298
1.298
3912
4.404

12.81
6.72
9.58
8.01
9.33

5.132
2.696
5.002
3.326
5.515
5.359
6.492
3.454
2.969
4.924

13.75
13.92
14.13
14.46
11.16
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21.

22,

10.38 11.13 3.56 457 17.85
11.97 16.96 5.04  13.77 6.60
14.34 11.70 11.95 9.24 9.65
13.88 8.93 12.72 9.00 0.89
13.39 1037  20.53 9.92 3.49

Using appropriate methods, determine how the time is distributed.

Daily demands for transmission overhaul Kits for the D-3 dragline were maintained by Earth Moving
Tractor Company, with the following results:

0 2 0 0 0
1 0 1 1 I
0 1 0 0 0
2 0 1 0 1
0 1 0 0 2
1 0 1 0 0
0 0 0 0 0
1 0 1 0 1
0 0 3 0 1
I 0 0 0 0

How are the daily demands distributed? Develop and test an appropriate model.

A simulation is to be conducted of a job shop that performs two operations: milling and planing, in
that order. It would be possible to collect data about processing times for each operation, then generate
random occurrences from each distribution. However, the shop manager says that the times might
be related; large milling jobs take lots of planing. Data are collected for the next 25 orders, with the
following results in minutes:

Milling Planing Milling Planing
Time Time Time Time
Order (Minutes) (Minutes) Order (Minutes) (Minutes)

| 123 10.6 14 24.6 16.6
2 204 13.9 15 28.5 21.2
3 18.9 14.1 16 11.3 9.9
4 16.5 10.1 17 13.3 10.7
5 8.3 8.4 18 21.0 14.0
6 6.5 8.1 19 19.5 13.0
7 25.2 16.9 20 15.0 11.5
8 17.7 13.7 21 12.6 9.9
9 10.6 10.2 22 14.3 13.2
10 13.7 12.1 23 17.0 12.5
11 26.2 16.0 24 212 14.2
12 304 18.9 25 28.4 19.1
13 9.9 7.7

(a) Plot milling time on the horizontal axis and planing time on the vertical axis. Do these data seem
dependent?
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23.

24.

25.

26.

27,

28.

29,

(b) Compute the sample correlation between milling time and planing time.
(c) Fit a bivariate normal distribution to these data.

Write a computer program to compute the maximum-likelihood estimators ( &, B ) of the Weibull distri-
bution. Inputs to the program should include the sample size, n; the observations, Xy Xy, X3 A
stopping criterion, € (stop when | f(f3;)|<e€); and a print option, OPT (usually set = 0). Output would
be the estimates & and f. If OPT = I, additional output would be printed, as in Table 9.4, showing
convergence. Make the program as “user friendly” as possible.

Examine a computer-software library or simulation-support environment to which you have access.
Obtain documentation on data-analysis software that would be useful in solving exercises 7 through 24.
Use the software as an aid in solving selected problems.

The duration of calls in minutes over a telephone line is
2.058 6.407 0.565 0.641 5.989 0.435 0.278 3.447 11.461 1.658 2.913 2.689 4.747 2.587
Develop an input model for the call duration data.

The following data represent the time to perform transactions in a bank, measured in minutes: 0.740,
1.28, 1.46, 2.36, 0.354, 0.750, 0.912, 4.44, 0.114, 3.08. 3.24, 1.10, 1.59, 1.47, 1.17, 1.27, 9.12, 11.5,
2.42, 1.77. Develop an input model for these data.

Two types of jobs (A and B) are released to the input buffer of a job shop as orders arrive, and the arrival
of orders is uncertain. The following data are available from the last week of production:

Day Number of Jobs Number of A’s

1 83 53
2 93 62
3 112 66
4 65 41
5 78 55

Develop an input model for the number of new arrivals of each type each day.

The following data are available on the processing time at a machine (in minutes): 0.64, 0.59, 1.1, 3.3,
0.54, 0.04, 0.45, 0.25, 4.4, 2.7, 2.4, 1.1, 3.6. 0.61, 0.20, 1.0, 0.27, 1.7, 0.04, 0.34. Develop an input
model for the processing time.

In the process of the development of an inventory simulation model, demand for a component is

1 2 3 4 3 S 4 3
4 4 6 6 5 4 6 4
5 7 5 5 7 1 5 2
3 4 3 4 2 8 7 2
3 8 4 4 5 3 1 6

Using appropriate model, identify how the demand is distributed.

Using the web, research some of the input-modeling software packages mentioned in this chapter. What
are their features? What distributions do they include?
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Verification and Validation of
Simulation Models

One of the most important and difficult tasks facing a model developer is the verification and validation of
the simulation model. The engineers and analysts who use the model outputs to aid in making design
recommendations and the managers who make decisions based on these recommendations—justifiably look
upon a model with some degree of skepticism about its validity. It is the job of the model developer to work
closely with the end users throughout the period of development and validation to reduce this skepticism and
to increase the model’s credibility.

The goal of the validation process is twofold: (1) to produce a model that represents true system behavior
closely enough for the model to be used as a substitute for the actual system for the purpose of experimenting
with the system, analyzing system behavior, and predicting system performance; and (2) to increase to an
acceptable level the credibility of the model, so that the model will be used by managers and other decision
makers.

Validation should not be seen as an isolated set of procedures that follows model development, but rather
as an integral part of model development. Conceptually. however, the verification and validation process
consists of the following components:

1. Verification is concerned with building the model correctly. It proceeds by the comparison of the con-
ceptual model to the computer representation that implements that conception. It asks the questions: Is
the model implemented correctly in the simulation software? Are the input parameters and logical
structure of the model represented correctly?

2. Validation is concerned with building the correct model. It attempts to confirm that a model is an
accurate representation of the real system. Validation is usually achieved through the calibration of
the model, an iterative process of comparing the model to actual system behavior and using the

310
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discrepancies between the two, and the insights gained. to improve the model. This process is
repeated until model accuracy is judged to be acceptable.

This chapter describes methods that have been recommended and used in the verification and validation
process. Most of the methods are informal subjective comparisons; a few are formal statistical procedures.
The use of the latter procedures involves issues related to output analysis, the subject of Chapters 11 and 12.
Output analysis refers to analysis of the data produced by a simulation and to drawing inferences from these
data about the behavior of the real system. To summarize their relationship, validation is the process by which
model users gain confidence that output analysis is making valid inferences about the real system under study.

Many articles and chapters in texts have been written on verification and validation. For discussion of
the main issues, the reader is referred to Balci [1994, 1998, 2003}, Carson [1986, 2002], Gass [1983],
Kleijnen [1995], Law and Kelton {2000], Naylor and Finger [1967], Oren [1981], Sargent {2003}, Shannon
[1975], and van Horn [1969, 1971]. For statistical techniques relevant to various aspects of validation, the
reader can obtain the foregoing references plus those by Balci and Sargent [1982a,b; 1984a], Kleijnen
[1987}, and Schruben [1980]. For case studies in which validation is emphasized, the reader is referred to
Carson e al. [1981a,b], Gafarian and Walsh [1970], Kleijnen [1993], and Shechter and Lucas [1980].
Bibliographies on validation have been published by Balci and Sargent [1984b] and by Youngblood [1993].

10.1 MODEL BUILDING, VERIFICATION, AND VALIDATION

The first step in model building consists of observing the real system and the interactions among their
various components and of collecting data on their behavior. But observation alone seldom yields sufficient
understanding of system behavior. Persons familiar with the system, or any subsystem, should be questioned
to take advantage of their special knowledge. Operators, technicians, repair and maintenance personnel,
engineers, supervisors, and managers understand certain aspects of the system that might be unfamiliar to
others. As model development proceeds. new questions may arise, and the model developers will return to
this step of learning true system structure and behavior.

The second step in model building is the construction of a conceptual model—a collection of assump-
tions about the components and the structure of the system, plus hypotheses about the values of model input
parameters. As is illustrated by Figure 10.1, conceptual validation is the comparison of the real system to the
conceptual modei.

The third step is the implementation of an operational model, usually by using simulation software and
incorporating the assumptions of the conceptual model into the worldview and concepts of the simulation
software. In actuality, model building is not a linear process with three steps. Instead, the model builder will
return to each of these steps many times while building, verifying, and validating the model. Figure 10.1
depicts the ongoing model building process, in which the need for verification and validation causes
continual comparison of the real system to the conceptual model and to the operational model and induces
repeated modification of the model to improve its accuracy.

10.2 VERIFICATION OF SIMULATION MODELS

The purpose of model verification is to assure that the conceptual model is reflected accurately in the
operational model. The conceptual model quite often involves some degree of abstraction about system opera-
tions or some amount of simplification of actual operations. Verification asks the following question: Is the
conceptual model (assumptions about system components and system structure, parameter values, abstractions,
and simplifications) accurately represented by the operational model?
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Calibration
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Conceptual model

. Assumptions on system components

. Structural assumptions, which define
the interactions between system
components

. Input parameters and data assumptions
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\ Operational model
(Computerized
representation)

\

Figure 10.1 Model building, verification, and validation.

Many common-sense suggestions can be given for use in the verification process:

1.

2.

Have the operational model checked by someone other than its developer, preferably an expert in the
simulation software being used.

Make a flow diagram that includes each logically possible action a system can take when an event
occurs, and follow the model logic for each action for each event type. (An example of a logic flow
diagram is given in Figures 2.2 and 2.3 for the model of a single-server queue.)

Closely examine the model output for reasonableness under a variety of settings of the input parameters.
Have the implemented model display a wide variety of output statistics, and examine all of them closely.
Have the operational model print the input parameters at the end of the simulation, to be sure that
these parameter values have not been changed inadvertently.

. Make the operational model as self-documenting as possible. Give a precise definition of every vari-

able used and a general description of the purpose of each submodel, procedure (or major section of

code), component, or other model subdivision.

If the operational model is animated, verify that what is seen in the animation imitates the actual

system. Examples of errors that can be observed through animation are automated guided vehicles

(AGVs) that pass through one another on a unidirectional path or at an intersection and entities that

disappear (unintentionally) during a simulation.

The Interactive Run Controller (IRC) or debugger is an essential component of successful simulation

model building. Even the best of simulation analysts makes mistakes or commits logical errors when

building a model. The IRC assists in finding and correcting those errors in the following ways:

(a) The simulation can be monitored as it progresses. This can be accomplished by advancing the
simulation until a desired time has elapsed, then displaying model information at that time.
Another possibility is to advance the simulation until a particular condition is in effect, and then
display information.
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(b) Attention can be focused on a particular entity line, of code. or procedure. For instance. every time
that an entity enters a specified procedure, the simulation will pause so that information can be
gathered. As another example. every time that a specitfied entity becomes active. the simulation
will pause.

(¢) Values of selected model components can be observed. When the simulation has paused. the current
value or status of variables. attributes. queues. resources. counters, and so on can be observed.

(d) The simulation can be temporarily suspended. or paused. not only to view information. but also
to reassign values or redirect entities.

8. Graphical interfaces are recommended for accomplishing verification and validation [Borts-cheller and

Saulnier. 1992|. The graphical representation of the model is essentially a form of self-documentation.

It simplities the task of understanding the model.

These suggestions are basically the same ones an_v-software engineer would follow.

Among these common-sense suggestions. one that is very easily implemented. but quite often overlooked.
especially by students who are learning simulation. is a close and thorough examination of model output for
reasonableness (suggestion 3). For example, consider a model of a complex network of queues consisting of
many service centers in series and parallel configurations. Suppose that the modeler is interested mainly in the
response time. defined as the time required for a customer to pass through a designated part of the network.
During the verification (and calibration) phase of model development. it is recommended that the program
collect and print out many statistics in addition to response times. such as utilizations of servers and time-
average number of customers in various subsystems. Examination of the utilization of a server. for example.
might reveal that it is unreasonably low (or high). a possible error that could be caused by wrong specification
of mean service time. or by a mistake in model logic that sends too few (or too many) customers to this
particular server. or by any number of other possible parameter misspecifications or errors in logic.

In a simulation language that automatically collects many standard statistics (average queue lengths.
average waiting times, etc.). it takes little or no extra programming effort to display almost all statistics of
interest. The effort required can be considerably greater in a general-purpose language such as Java. C. or
C++. which do not have statistics-gathering capabilities to aid the programmer.

Two sets of statistics that can give a quick indication of model reasonableness are current contents and
total count. These statistics apply to any system having items of some kind flowing through it, whether these
items be called customers. transactions. inventory, or vehicles. “Current contents™ refers to the number of
items in cach component of the system at a given time. “Total count™ refers to the total number of items that
have entered cach component of the system by a given time. In some simulation software, these statistics are
Kept automatically and can be displayed at any point in simulation time. In other simulation software. simple
counters might have to be added to the operational model and displayed at appropriate times. If the current
contents in some portion of the system are high. this condition indicates that a large number of entities are
delayed. If the output is displayed for successively longer simulation run times and the current contents tend
to grow in a more or less lincar fashion. it is highly likely that a queue is unstable and that the server(s) will
tall further behind as time continues. This indicates possibly that the number of servers is 0o small or that a
service time is misspecitied. (Unstable queues were discussed in Chapter 6.) On the other hand. if the total
count for some subsystem is zero. this indicates that no items entered that subsystem—again. a highly suspect
ocearrence. Another possibility is that the current count and total count are equal to one. This could indicate

that an entity has captured a resource. but never freed that resource. Careful evaluation of these statistics for
various run lengths can aid in the detection of mistakes in model logic and data misspecifications. Checking
for output reasonableness will usually fail to detect the more subtle errors, but it is one of the quickest ways
to discover gross errors. To aid in error detection. it is best for the model developer to forecast a reasonable
range for the value of selected output statistics before making a run of the model. Such a forecast reduces the
possibility of rationalizing a discrepancy and failing to investigate the cause of unusual output.
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For certain models. it is pussible to consider more than whether a particular statistic is reasonable. it is
possible to compute certain long-run measures ol performance. For example. as seen in Chapter 6. the
analyst can compute the long-run server utilization for a large number of queueing systems without any
special assumptions regarding mterarrival or service-time distributions. Typically. the only information
needed is the network configuration. plus arrival and service rates. Any measure of performance that can be
computed analytically and then compared to its simulated counterpast provides another valuabte ool tor
verification. Presumably, the objective ol the simulation is to estinate some measure of performance. such
as mean response lime. that cannot be computed analyvticaily: but, as ilustrated by the formulas m Chapter 6
for a number of special queues (M/M/1 M/G/1, ete.). all the measures of performance in a gueueing system
are interrelated. Thus, if a simulation model is predicting one measure (such as utilization) correcdy. then
confidence in the model's predictive ability for other related measures (such as response time) is increased
(even though the exact relation between the two measures is. of course. unknown in general and varies from
model to model). Conversely. it a model incorrectly predlgtx utilization. its prediction of other quantities.
such as mean response time, is highly suspect.

Another important way 1o aid the verification process is the oft-neglected documentation phase. It
a model builder writes brief comments in the operational model. plus definitions of all variables and para-
meters. plus descriptions of cach major section of the operational model. it becomes much simpler for some-
one else. or the model builder at a later date. to verify the model logic. Documentation is also important as
a means of clarifying the logic of a model and verifying its completeness.

A more sophisticated technique is the use of a trace. In general. a trace is a detailed computer printout
which gives the value of every variable (in a specified set of variables) in & computer program. every time
that one of these variables changes in value. A trace designed specifically for use in a simulation program
would give the value of selected variables each time the simulation clock was incremented (i.e.. cach time
an event oceurred). Thus. a simulation trace is nothing more than a detailed printout of the state of the
simulation model as it changes over time.

Example 10.1
When veritying the operational model (in a general purpose lan"u‘wg such as FORTRAN. Pawal Cor C++.

or most simulation languages) of the single-server queue model of Example 2.1, an analyst made a run over
16 units of time and observed that the time-average length of the waiting line was 1“ =0.4375 customer.
which is certainly reasonable for a short run of only 16 time units. Nevertheless. the analyst decided that a
more detailed verification would be of value.

The trace in Figure 10.2 gives the hypothetical printout from siraulation time CLOCK =010 CLOCK = 16
for the simple single-server queue of Example 2 1. This example llustrates how an error can be tound with
a trace, when no error was apparent from the examination of the summary output statistics (such as l . Note
that. at simulation time CLOCK = 3. the number of customers in the system is NCUST = 1. but Ihs, server
is idle (STATUS = 0). The source of this error could be incorrect logic. or simply not setting the attribute
STATUS to the value 1 (when coding in a general purpose language or most simulation languages).

In any case. the error must be found and corrected. Note that the less sophisticated practice of examin-
ing the summary measures. or output. did not dg tect the error. By using equation (6.1). the reader can verify
that L was computed correctly from the data (L, is the time-average value of \’CUST minus STATUS):

[ = (()f())3+(l~())2+<()—())6+(1»())l+<241)4
v 3+2+406+1+4

= l:().4375
16

as previously mentioned. Thus, the output measure. L. had a reasonable value and was computed correctly
from the data. but its value was indeed wrong because the attribute STATUS was not assuming correct
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Delinition of Variables:

CLOCK = Simulation clock
EVTYP = Fuventtype (start. arrival. departure. or stop)
NCUST = Number of customers in system at ime “CLOCK"

STATUS = Status of server (1—busy, O-idle)

State of System Just Afer the Named Event Oceurs:

CLOCK =0 EVTYP = Start’ NCUST =0 STATUS =0
CLOCK =3 EVIYP =-Arrivalm  NCUST =1 STATUS =0
CLOCK =5 EVTYP = Depart’ NCUST =0 STATUS =0
CLOCK =11 LVTYP = Arrivalm  NCUST =1 STATUS =0
CLOCK =12 EVTYP = Arrival’  NCUST =2 STATUS

CLOCK =16  EVTYP = Depart’ NCUST =1  STATUS =1

I

Figure 10.2 Simulation Trace of Example 2.1.

values. As is seen from Figure 10.2, a trace yields information on the actual history of the model that is more
detailed and informative than the summary measures alone.

Most simulation software has a built-in capability to conduct a trace without the programmer having to
do any extensive programming. In addition, a “print” or *write” statement can be used to implement a tracing
capability in a general-purpose language.

As can be casily imagined. a trace over a large span of simulation time can quickly produce an extremely
large amount of computer printout. which would be extremely cumbersome to check in detail for correct-
ness. The purpose of the trace is to verify the correctness of the computer program by making detailed paper-
and-pencil caleulations. To make this practical. a simulation with a trace is usually restricted to a very short
pertod of time. Itis desirable. of course. to ensure that each type of event (such as ARRIVAL) occurs at least
once, so that its consequences and effect on the model can be checked for accuracy. If an event is especially
rare in occurrence, it may be necessary to use artificial data to force it to occur during a simulation of short
duration. This is legitimate, as the purpose is to verify that the effect on the system of the rare event is as
intended.

Some software allows a selective trace. For example. a trace could be set for specific locations in the model
or could be triggered to begin at a specified simulation time. Whenever an entity goes through the designated
locations, the simulation software writes a time-stamped message to a trace file. Some simulation software
allows tracing a sclected entity: any time the designated entity becomes active, the trace is activated and time-
stamped messages are written. This trace is very useful in following one entity through the entire model.
Another example of a selective trace is to set it for the occurrence of a particular condition. For example. when-
ever the queue before a certain resource reaches five or more. turn on the trace. This allows running the
simulation until something unusual oceurs. then examining the behavior from that point forward in time.
Different simulation software packages support tracing to various extents. In practice. it is often implemented
by the model developer by adding printed messages at appropriate points into a model.

Of the three classes of techniques—the common-sense technigues. thorough documentation, and
traces -~it is recommended that the first two always be carried out. Close examination of model output for
reasonableness is especially valuable and informative. A generalized trace may provide voluminous data, far
more than can be used or examined carefully. A selective trace can provide useful information on Key model
components and keep the amount of data 10 a manageable level.
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10.3 CALIBRATION AND VALIDATION OF MODELS

Verification and validation. although conceptually distinct, usually are conducted simultancously by the
modeler. Validation is the overall process of comparing the model and its behavior to the real system and its
behavior. Calibration is the iterative process of comparing the model to the real system. making adjustiments
(or even major changes) to the model. comparing the revised model to reality, making additional adjustments.
comparing again. and so on. Figure 10.3 shows the relationship of model calibration to the overall validation
process. The comparison of the model to reality is carried out by a variety of tests—some subjective. others
objective. Subjective tests usually involve people. who are knowledgeable about one or more aspects of the
system, making judgments about the model and its output. Objective tests always require data on the system’s
behavior. plus the corresponding data produced by the model. Then one or more statistical tests are performed
to compare some aspect of the system data set with the same aspect of the model data set. This iterative process
of comparing model with system and then revising both the conceptual and operational models 1o accom-
modate any perceived model deficiencies is continued until the model is judged to be sufficiently accurate.

A possible criticism of the calibration phase. were it to stop at this point. is that the model has been
validated only for the one data set used—that is. the model has been “fitted™ to one data set. One way 1o alle-
viate this criticism is to collect a new set of syster data (or 1o reserve a portion of the original system data)
10 be used at this final stage of validation. That is. after the model has been calibrated by using the original
system data set, a “final™ validation is conducted, using the second system data set. If unacceptable discrep-
ancies between the model and the real system are discovered in the “tinal™ validation effort. the modeler must
return to the calibration phase and modify the model until it becomes acceptable.

Validation is not an either/or proposition—no model is ever totally representative of the system under study.
In addition. cach revision of the model. as pictured in Figure 10.3, involves some cost, time, and effort. The
modeler must weigh the possible, but not guaranteed. increase in model accuracy versus the cost of increased
validation effort. Usually, the modeler (and model users) have some maximum discrepancy between model
predictions and system behavior that would be acceptable. If this level of accuracy cannot be obtained within the
budget constraints. either expectations of model accuracy must be lowered. or the model must be abandoned.

Compare model Initial
] \/ 1o reality model
\ Revise

Compare revised _ /First rum

\ Real model to reality \_ of model
\ system

/ / Revise

/
1/
//
/ : Y
D
( Compare second -~ // Second revision )
[N

revision to reality ~._  ofmodel
\\ ~————

Revise

Figure 10.3 lterative process of calibrating a model.
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As an aid in the validation process, Naylor and Finger [1967] formulated a three-step approach that has
been widely tollowed:

1. Build a model that has high face validity.

2. Validate model assumptions.

3. Compare the model input—output transformations to corresponding input—output transformations for
the real system.

The next five subsections investigate these three steps in detail.

10.3.1 Face Validity

The first goal of the simulation modeler is to construct a model that appears reasonable on its tace to model
users and others who are knowledgeable about the real system being simulated. The potential users of a model
should be involved in model construction from its conceptualization to its implementation, to ensure that a
high degree of realism is built into the model through reasonable assumptions regarding system structure and
through refiable data. Potential users and knowledgeable persons can also evaluate model output for reason-
ableness and can aid in identifying model deficiencies. Thus, the users can be involved in the calibration
process as the model is improved iteratively by the insights gained from identification of the initial model defi-
ciencies. Another advantage of user involvement is the increase in the model’s perceived validity. or credibility.
without which a manager would not be willing to trust simulation results as a basis for decision making.

Sensitivity analysis can also be used to check a model’s face validity. The model user is asked whether
the model behaves in the expected way when one or more input variables is changed. For example, in most
queucing systems, if the arrival rate of customers (or demands for service) were to increase. it would be
expected that utilizations of servers. lengths of lines. and delays would tend to increase (although by how
much might well be unknown). From experience and from observations on the real system (or similar related
systems). the model user and model builder would probubly have some notion at least of the direction of
change in model output when an input variable is increased or decreased. For most large-scale simulation
models, there are many input variables and thus many possible sensitivity tests. The model builder must
attempt to choose the most critical input variables for testing if it is too expensive or time consuming to vary
all input variables. If real system data are available for at least two settings of the input parameters, objec-
tive scientific sensitivity tests can be conducted via appropriate statistical techniques.

10.3.2 Validation of Model Assumptions

Model assumptions fall into two general classes: structural assumptions and data assumptions. Structural
assumptions involve questions of how the system operates and usually involve simplifications and abstrac-
tions of reality. For example. consider the customer queueing and service facility in a bank. Customers can
form one line. or there can be an individual line for each teller. If there are many lines, customers could be
served strictly on a first-come-first-served basis. or some customers could change lines if one line is moving
faster. The number of tellers could be fixed or variable. These structural assumptions should be veritied by
actual observation during appropriate time periods and by discussions with managers and tellers regarding
bank policies and actual implementation of these policies.

Data assumptions should be based on the collection of reliable data and correct statistical analysis of the
data. (Example 9.1 discussed similar issues for a model of a laundromat.) For example. in the bank study
previously mentioned. data were collected on

L. interarrival times of customers during several 2-hour periods of peak loading (*‘rush-hour” traffic);
2. interarrival times during a slack period:
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3. service times for commercial accounts:
4. service times for personal accounts.

The reliability of the data was verified by consultation with bank managers. who identified typical rush
hours and typical slack times. When combining two or more data sets collected at different times. data reli-
ability can be further enhanced by objective statistical tests for homogencity of data. (Do two data sets {X,}
and { ¥} on service times for personal accounts, collected at two different times. come from the same parent
population? If so. the two sets can be combined.) Additional tests might be required. to test for correlation
in the data. As soon as the analyst is assured of dealing with a random sample (i.c.. correlation is not present).
the statistical analysis can begin.

The procedures for analyzing input data from a random sample were discussed in detail in Chapter 9.
Whether done manually or by special-purpose sottware. the analysis consists of three steps:

1. identify an appropriate probability distribution.

2. Estimate the parameters of the hypothesized distribution.

3. Validate the assumed statistical model by a goodness-of-fit test. such as the chi-square or Kolmogorov-
Smirnov test, and by graphical methods.

The use of goodness-of-fit tests is an important part of the validation of data assumptions.

10.3.3 Validating Input-Output Transformations

The ultimate test of a model. and in fact the only objective test of the model as a whole. is the model’s abitity
to predict the future behavior of the real system when the model input data match the real inputs and when
a policy implemented in the model is implemented at some point in the system. Furthermore. if the level of
some input variables (e.g.. the arrival rate of customers to a service facility) were to increase or decrease. the
model should accurately predict what would happen in the real system under similar circumstances. In other
words. the structare of the model should be accurate enough for the model to make good predictions. not just
for one input data set. but for the range of input data sets that are of interest.

In this phase of the validation process, the model is viewed as an input-output transformation—that is, the
model accepts values of the input parameters and transforms these inputs into output measures of performance.
It is this correspondence that is being validated.

Instead of validating the model input-output transformations by predicting the future. the modeler
could use historical data that have been reserved for validation purposes only-—that is. it one data set has
been used to develop and calibrate the model. it is recommended that a separate data sct be used as the final
validation test. Thus. accurate “prediction of the past” can replace prediction of the future for the purpose
of validating the model.

A model is usually developed with primary interest in a specific set of system responses to be measured
under some range of input conditions. For example. in a queueing system. the responses may be server
utilization and customer delay. and the range of input conditions (or input variables) may include two or three
servers at some station and a choice of scheduling rules. In a production system. the response may be
throughput (i.e., production per hour), and the input conditions may be a choice of several machines that run
at different speeds, with cach machine having its own breakdown and maintenance characteristics.

In any case, the modeler should use the mair responses of interest as the primary criteria tor validating
a model. If the model is used later for a purpose different from its original purpose. the model should be
revalidated in terms of the new responses of interest and under the possibly new input conditions.

A necessary condition for the validation of input-output transformations is that some version of the
system under study exist. so that system data under at least one sct of input conditions can be collected to
compare to model predictions. If the system is in the planning stages and no system operating data can be
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collected. complete input-output validation is not possible. Other types of validation should be conducted.
to the extent possible. In some cases, subsystems of the planned svstem may exist. and a partial input—output
validation can be conducted.

Presumably. the model will be used to compare alternative system designs or 1o investigate system
behavior under a range of new input conditions. Assume for now that some version of the syslem is operating
and that the model of the existing system has been validared. What. then, can be said about the validity of
the model when different inputs are used?—that is. if model inputs are being changed to represent a new
system design. or anew way to operate the system. or even hypothesized future conditions, what can be said
about the validity of the model with respect 1o this new but nonexistent proposed system or to the system
under new input conditions”!

First. the responses of the two models under similar input conditions will be used as the criteria for com-
parison of the existing system to the proposed system. Validation increases the modeler’s confidence that the
model of the existing system is accurate. Second. in many cases. the proposed system is a modification of
the existing system. and the modeler hopes that confidence in the model of the existing system can be trans-
ferred to the model of the new system. This transfer of confidence usually can be justified if the new model
is a relatively minor modification of the old model in terms of changes to the operational model (it may be
a major change for the actual system). Changes in the operational model ranging from relatively minor to
relatively major include the following:

L. minor changes of single numerical parameters. such as the speed of a machine. the arrival rate of
customers (with no change in distributional form of interarrival times). the number of servers in a
parallel service center, or the mean time to failure or mean time (o repair of a machine:

r

2. minor changes of the form of a statistical distribution. such as the distribution of a service time or
atime to failure of a machine:

3. major changes in the logical structure of a subsystem, such as a change in queue discipline for a
waiting-line model or a change in the scheduling rule for a job-shop model:

4. major changes involving a different design for the new system. such as a computerized inventory

control system replacing an older noncomputerized system, or an automated storage-and-retrieval

system replacing a warehouse system in which workers pick items manually using fork trucks.

If the change to the operational model is minor. such as in items 1 or 2. these changes can be carefully ver-
tied and output from the new model accepted with considerzble contidence. I a sufficiently similar subsystem
exists elsewhere. it might be possible to validate the submodel that represents the subsystem and then to inte-
arate this submodel with other validated submodels to build a complete model. In this way. partial validation
of the substantial model changes in items 3 and 4 might be possible. Unfortunately, there is no way to validate
the input-output transformations of a model of a nonexisting system completely. In any case. within time and
budget constraints, the modeler should use as many validation techniques as possible. including input—output
validation of subsystem models it operating data can be collected on such subsystems.

Example 10.2 will illustrate some of the techniques that are possible for input-output validation and will
discuss the concepts of an input variable. uncontrollable variable. decision variable. output or response vari-
able. and input—output transformation in more detail.

Example 10.2: The Fifth National Bank of Jaspar __ -
Fhe Fifth National Bank of Jaspar, as shown in Figure 10.4. is planning to expand its drive-in service at the
corner of Main Street. Currently. there is one drive-in window serviced by one teller. Only one or two transac-
tions are allowed at the drive-in window. so it was assumed that each service time was a random sample from
some underlying population. Service times {S. 7/ = 1. 2..... 90} and interarrival times {A, i=1.2..... 90}
were collected for the 90 customers who arrived between 11:00 .. and 1:00 p.m. on a Friday. This time slot
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Figure 10.4 Drive-in window at the Fifth National Bank.

was selected for data collection after consultation with management and the teller because it was felt to be
representative of a typical rush hour.

Data analysis (as outlined in Chapter 9) led to the conclusion that arrivals could be modeled as a Poisson
process at a rate of 45 customers per hour and that service times were approximately normally distributed.
with mean 1.1 minutes and standard deviation (1.2 minute. Thus. the model has two input variables:

1. interarrival times, exponentially distributed (i.e., a Poisson arrival process) at rate A = 45 per hour:
2. service times, assumed to be N(1.1. (0.2)7).

Each input variable has a level: the rate (A =45 per hour) for the interarrival times. and the mean 1.1 minutes
and standard deviation 0.2 minute for the service times. The interarrival times are examples of uncontrollable
variables (i.e.. uncontrollable by management in the real system). The service times are also treated as uncon-
trollable variables, although the level of the service times might be partially controllable. If the mean service
time could be decreased to 0.9 minute by installing a computer terminal. the level of the service-time variable
becomes a decision variable or controllable parameter. Setting all decision variables at some level constitutes
a policy. For example, the current bank policy is one teller (D) = 1), mean service time D, = 1.1 minutes. and
one line for waiting cars (D, = 1). (D, D,, ... are used to denote decision variables.) Decision variables are
under management's control: the uncontrollable variables. such as arrival rate and actual arrival times. are not
under management’s control. The arrival rate might change from time to time. but such change is treated as
being due to external factors not under management control.

A mode!l of current bank operations was developed and verified in close consultation with bank
management and employees. Model assumptions were validated. as discussed in Section 10.3.2. The resulting
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model is now viewed as a “black box™ that takes all input-variable specifications and transforms them into a
set of output or response variables. The output variables consist of all statistics of interest generated by the
simulation about the model’s behavior. For example. management is interested in the teller’s utilization at the
drive-in window (percent of time the teller is busy at the window). average delay in minutes of a customer
from arrival to beginning of service. and the maximum length of the line during the rush hour. These input
and output variables are shown in Figure 10.5 and are listed in Table 10.1. together with some additional
output variables. The uncontrollable input variables are denoted by X. the decision variables by D, and the

I Poisson arrivals N Teller's utilization

— N X

‘ rate = 45/hour e Y, =p
Random ‘
variables \J

‘ Service times Yoy

! B MO R M

; N(D, 0.27) )

I - 0]

D Average delay

. E Ys

| One teller I i

| D,

|

I

sCisi | Mean service time Maximum line length
Decision ; “Black hox” —
variables | D, = |.1 minutes '
One line
D=1
Input variables Maodel Output variables

Figure 10.5 Model input-output transformation.

Table 10.1 Input and Output Variables for Model of Current Bank Operations

Inpur Vartables Model Ouiput Variables, Y

D = decision variables Variables of primary interest

X = other variables

Poisson arrivals at rate = 45/hour
XX

Service times. N (.. 0.29)

Xo Xoon oo

D
D, = 1.1 minutes (mean service time)
D, =1 (one line)

=1 (one teller)

to management (Y. Y. ¥5)
Y, = teller’s utilization
Y. = average delay
Y. = maximum line length
O:her output variables of
secondary terest
¥, = observed arrival rate

~
~
|

= average service time

-
|

= sample standard deviation of service
times
Y- =average length of waiting line
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output variables by Y. From the “black box™ point of view. the model takes the inputs X and D and produces
the outputs Y. namely

(X.D)—5 ¥

or

fX. D)y =Y

Here fdenotes the transtformation that is due to the structure of the model. For the Fifth Natonal Bank study.
the exponentially distributed interarrival time generated in the model (by the methods of Chanter 8) between
customer n — 1 and customer » is denoted by X, 1 Do not confuse X, with A, : the latter was an observation
made on the real system.) The normally distributed service time generated in the model for customer n is
denoted by X, The set of deciston variables, or policy.is D = (D, D-. D= (1. 1.1, 1) for current opera-
tions. The output. or response. variables are denoted by Y= (V. Y. ..o Yo and are defined in Table 10.1.

For validation of the input—output transformations of the bank model to be possible. real svstem data
must be avatlable. comparable to at least some of the model output ¥ of Table 10.1. The system responses
should have been collected during the same time period (from 11:00 A, o 1:00 pat.on the same Friday)
in which the iput data {A,. S;} were collected. This iy important because, il system response data were
collected on a slower day (say. an arrival rate of 40 per hour). the system responses such as teller utilization (7).
average delay (Z.), and maximum line length (Z,) would be expected to be lower than the samic variables
during a time slot when the arrival rate was 45 per hour. ax observed. Suppose that the delay of successive
customers was measured on the same Friday between 1100 At and 1:00 eM.and that the average delay
wis found to be Z, = 4.3 minutes. For the purpose of validaton, we will consider this to be the true mean
value p, = 4.3

When the model is run with generated random variates X, and X,,. it is expected that observed values
of average delay. Y. should be close to Z, = 4.3 munutes. The generated input values (X, and X,,) cannot be
expected to replicate the actual input values (A, and S,) of the real system exactly. but they are expected o
replicate the statistical pattern of the actual inputs. Hence. simulation-generated values ot Y. are expected to
be consistent with the observed system variable. Z. = 4.3 minutes. Now consider how the modeler might test
this consistency.

The modeler makes a small number of statistically independent replications of the model. Statisticai
independence is guaranteed by using nonoverlapping sets of random numbers produced by the random-
number generator or by choosing seeds for each replication independently (from a random number table).
The results of six independent replications. cach of 2 hours duration. are given in Table 10.2.

Table 10.2 Results of Six Replications of the First Bank Model

Y, Y5 Yo =Average Delay
Replication (Arrivals/Hour) (Minutes) (Minutes)
! Sl 1.07 2.79
2 40 .12 112
3 455 1.06 224
4 S0.5 1.10 343
5 53 1.09 313
6 49 1.07 2.3%
Sample mean 251
Standard deviation (182
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Observed arrival rate Y, and sample average service time Ys for each replication of the model are also
noted. to be compared with the specified values ot 45/hour and 1.1 minutes. respectively. The validation test
consists of comparing the system response. namely average delay Z. = 4.3 minutes, 1o the model responses. Y.
Formally. a statistical test of the null hypothesis

H,  E(Y.)= 4.3 minutes
versus (10.1)
H :E(Y,)# 4.3 minutes

i~ conducted. Tt H,, is not rejected. then. on the basis of this test. there is no reason to consider the model
mvalid. I H,, is rejected. the current version of the model is rejected. and the modeler is forced to seck ways
o improve the model. as illustrated by Figure 10.3. As formulated here. the appropriate statistical test is the
7 test. which 1s conducted in the following manner:

Choose a level of significance. o. and a sample size. n. For the bank model. choose

o=005 n=06

Compute the sample mean. Y, and the sampie standard deviation. S. over the o replications. by using
Equations (9.1) and (9.2):

"

Y. = 72 Y, =251 minutes

"
and
” 1
P _
§S=|7————| =0.82minute
in—1
where Y, i = 1..... 6. are as shown in Table 10.2.

Get the critical value of 1 from Table A.S. For a two-sided test. such as that in equation (10.1). use
Toin o for a one-sided test, use 1, or =, . as appropriate (n — | being the degrees of freedom). From
Table A5, 1,05« = 2.571 for a two-sided test.

Compute the test statistic

Y,

- H :
1, =—— (10.2)
s

where g, 18 the specified value in the null hypothesis. H,, Here 1, = 4.3 minutes. so that

Y51 —43
2.51 4.‘:“5.34

T os2 Vo

For the two-sided test it iy > 1, 5, reject Hy,. Otherwise. do not reject H,,. [For the one-sided test with
Hy o ECYs) > g, reject Hyit e >0, owith Hy 0 ECYS) < g, reject Hy it r < —
Since 1] = 5.34 > 13055 = 2.57 1. reject H,,, and conclude that the model is inadequate in its prediction

of average customer delay.

ool |

Recall that. in the testing ot hypotheses. rejection ot the null hypothesis H,, 1s a strong conclusion. because

PUH, rejected | Hyy s true) = o (10.3)
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and the level of significance is chosen small. say o= 0.05. as was done here. Equation (10.3) says that the
probability of making the error of rejecting H,, when H,, is in fact true is low (o = 0.05)—that is. the proba-
bility is small of declaring the model invalid when it is valid (with respect to the variable being tested). The
assumptions justifying a ¢ test are that the observations (¥~ are normally and independently distributed. Are
these assumptions met in the present case?

1. The ith observation Vs, is the average delay of all drive-in customers who began service during the
ith simulation run of 2 hours: thus. by a Central Limit Theorem eftect. it is reasonable to assume that
cach observation Y, is approximately normally distributed. provided that the number of customers it
is based on is not too small.

2. The observations Y. i = 1. ..., 6. are statistically independent by design—that is. by choice of the
random-number seeds independently for each rephication or by use of nonoverlapping streams.

3. The 1 statistic computed by Equation (10.2) is a robust statistic—that is. it is distributed approximately
as the 7 distribution with n — | degrees of freedom. even when V... Y., ... are not exactly normally
distributed. and thus the critical values in Table A5 can reliably be used.

Now that the model of the Fifth National Bank of Jaspar has been found lacking, what should the modeler
do? Upon further investigation. the modeler realized that the model contained two unstated assumptions:

1. When a car arrived to find the window immediately available. the teller began service immediately.
2. There is no delay between one service ending and the next beginning. when a car is waiting.

Assumption 2 was found to be approximately correct, because a service time was considered to begin
when the teller actually began service but was not considered to have ended until the car had exited the drive-
in window and the next car, if any, had begun service. or the teller saw that the line was empty. On the other
hand. assumption | was found to be incorrect because the teller had other duties—mainly. serving walk-in

customers 1f no cars were present—and tellers always finished with a previous customer before beginning
service on a car. It was found that walk-in customers were always present during rush hour: that the transac-
tions were mostly commercial in nature, taking a considerably longer ime than the time required to service
drive-up customers: and that, when an arriving car found no other cars at the window. it had to wait until the
teller finished with the present walk-in customer. To correct this model inadequacy. the structure of the model
was changed to include the additional demand on the teller’s time. and data were collected on service times
of walk-in customers. Analysis of these data found that they were approximately exponentially distributed
with a mean of 3 minutes.

The revised model was run. yielding the results in Table 10.3. A test of the null hypothesis H, : E(Y5) =
4.3 minutes Jas in equation (10.1)] was again conducted. according to the procedure previously outlined.

Choose a = 0.05 and 7 = 6 (sample size).

Compute ¥, = 4.78 minutes. S = 1.66 minutes.

Look up. in Table A.S. the critical value 1,55 =2.571.

Compute the test statistic 1, = (Y, = 2,)/S ~n = 0.710.

Since [ty] < 10055 = 2.571, do not reject H,,. and thus tentatively accept the model as valid.

Failure to reject Hy must be considered as a weak conclusion unless the power of the test has been esti-

mated and found to be high (close to T—-that is. it can be concluded only that the data at hand (Y. ... Y
were not sufficient to reject the hypothesis H,, @ 11, = 4.3 minutes. In other words. this test detects no incon-
sistency between the sample data (Y5, .... Y5, and the specified mean y,,.

The power of a test is the probability of detecting a departure from H,, @ ¢ = i, when in fact such a depar-
ture exists. In the validation context. the power of the test is the probability of detecting an invalid model.
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Table 10.3 Results of Six Replicatiors of the Revised Bank Model

Y, s Yo = Average Delay
Replication (Arrivals/Hour) (Minuies) (Minutes)
| 51 1.07 5.37
2 40 111 1.98
3 455 .06 5.29
4 50.5 1.09 3.82
5 hE 1.08 6.74
6 49 1.08 549
Sample mean +.78
Standard deviation 1.66

The power may also be expressed as | minus the probability of a Type 1. or B. error. where 8= P(Type 11
cerror) = Pfailing to reject H,|H, is true) is the probability of accepting the model as valid when it is not
valid.

To consider failure to reject H,, as a strong conclusion. the modeler would want 8 to be small. Now, f
depends on the sample size 1 and on the true difference between £(Y.) and u, = 4.3 minutes—that is. on

where o. the population standard deviation of an individual Y,,. is estimated by S. Tables A. 10 and A.1] are
typical operating-characteristic (OC) curves. which are graphs of the probability of a Type 11 error ()
versus 0 for given sample size n. Table A 10 is for a two-sided 7 test: Table A.11 is for a one-sided 7 test.
Suppose that the modeler would like to reject H,, (model validity) with probability at teast 0.90 if the true
mean delay of the model. E(Y-). differed from the average delay in the system. g, = 4.3 minutes, by | minute.
Then & is estimated by

[ECYO =, l

=Rl L 60
s 1.66

For the two-sided test with ¢ = .03, use of Table A.10 results in

B1S)=B0.6)=0.75 for n = 6

To guarantee that [5(3) < 0.10. as was desired by the modeler. Table A.10 reveals that a sample size of approx-

mately n = 30 independent replications would be required—-that is. for a sample size n = 6 and assuming that
the population standard deviation is 1.66. the probability of accepting H,, (model validity). when in fact the
model is invalid (|£(Y) — | = T minute). is §=0.75. whick is quite high. If a I-minute difference is critical.
and i the modeler wants (o control the risk of declaring the model valid when model predictions are as much
as bminute offs a sample size of n = 30 replications is required to achieve a power of 0.9. If this sample size
Is too high. either a higher B risk tlower power) or a larger difference 8 must be considered.

In general. it is always best 1o control the Type [ error. or f error. by specifying a critical difference 8
and choosing a sample size by making use of an appropriate OC curve. (Computation of power and use of
OC curves for a wide range of tests is discussed in Hines. Montgomery, Goldsman. and Borror [2002].)
I summary. in the context of model validation. the Type Terror is the rejection of a valid model and is easily
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Table 10.4 Types of Error in Modal Validation

Associated
Statistical Terminology Maodeling Terminology Risk
Type L: rejecting H, when H, Rejecting a valid model o
Is true
Type II: failure o reject 1, Fatlure to reject an i
when /1, is vue invalid model 1

controtled by specifying a small level of significance ¢ (say o = 0.1. 0.05.0r 0.01). The Type 1F error is the
aceeptance of a model as valid when itis invalid For a fixed sample size n. increasing o will decrease f3 the
probability of a Type Il error. Once « is set. and the critical difference to be detected s selected. the only
way to decrease Bis o increase the sample size. A Type I error is the more serious of the two types ol errors:
thus, it is important to design the simulation experiments to control the risk of accepting an invalid model.
The two types of error are summarized in Table 104, which compares statistical terminology to modeling
terminology.

Note that validation is not to be viewed as an cither/or proposition. but rather should be viewed in the
context of calibrating a model, as conceptually exhibited in Figure 10.3. 1" the current version of the bank
model produces estimates of average delay (Y5) that are not close enough to real system behavior (g, = 4.3
minutes). the source of the discrepancy is sought. and the model is revised in light of this new knowledge.
This iterative scheme is repeated until model aceuracy is judged adequate.

Philosophically. the hypothesis-testing approach tries to evaluate whether the simulation and the real
system are the same with respect to some output performance measure or measures. A different, but closely
related. approach is to attempt o evaluate whether the simulation and the real-system performance measures
are close enough by using confidence intervals.

We continue to assume that there is a known output performance measure for the existing systeni.
denoted by g, and an unknown performance measure of the simulation. g that we hope is close. The
hypothesis-testing formulation tested whether p = g0 the contidence-interval formulation tries to bound
the difference |1 — ] 1 see whether it is € e a difference that is small enough to allow valid decisions te
be based on the simulation. The value of €is set by the analyst.

Specifically, if ¥ is the simulation output. and g = £(Y). then we execute the simulation and torm &

confidence mterval for g, suchas Y+ o S/\/n. The determination of whether to accept the model as valid
or to refine the model depends on the best-case and worst-case error implied by the confidence interval.

1. Suppose the confidence interval does not contain ;. (See Figure 10.6¢a).)
(a) If the best-case error is > &, then the difference in performance is large enough. even in the bes
case. to indicate that we need *o refine the simulation model.
(b) 1t the worst-case error is < . then we can accept the simulation model as close enough to be
considered valid.
{c) If the best-case error is < & but the worst-casc error is > £ then additional simulation replica-
tions are necessary (o shrink the confidence interval until o conclusion can be reached.
2. Suppose the contidence interval does contain g, (Sec Figure 10.6(b).)
(a) If either the best-case or worst-case error is > & then additional simulation replications are
necessary to shrink the contidence interval until a conclusion can be reached.
(b) If the worst-case error is < £ then we can accept the simulation model as close enough to be
considered valid.
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In Example 10.20 14, = 4.3 minutes. and “close enough™ was €= | minute of expected customer delay.
A 95% confidence interval. based on the 6 replications in Table 10,2, is
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25142571082/ Vo)

yielding the mterval [1.65. 3.37]. As i Figure 10.6(a). g, = +.3 falls outside the confidence interval. Since
in the best case [3.37 = 43 = 0.93 < 1. but in the worst case
are needed to reach a decision.

1.65 = 4.3 = 2.65 > 1. additional replications

10.3.4 Input-Output Validation: Using Historical Input Data

When using artificially generated data as input data. as was done to ftest the validity of the bank models in
Section 10.3.3, the modeler expects the model to produce event patterns that are compatible with. but not iden-
tical to. the cvent patterns that oceurred in the real system during the period of data collection. Thus. in the
hank model. artificial input data [ X, . X, 0= 1. 2.} for interarrival and service times were generated. and
replicates of the output data }'. were compared to what was Ghserved in the real system by means of the hypoth-
esis teststated in equation (10.1). An alternative to generating input data is 1o use the actual historical record.
(AL, =120 w drive the simulation model and then o compare model output with system data.

To implement this technique for the bank model. the data AL A,.... and Sy 8.0 would have to be
entered into the model into arrays. or stored in a file to be read as the need arose. Just after customer 1 arrived
al time 1, = Z Acustomer 2+ 1 would be scheduled on the future event list to arrive at future time
1,44, +1 twithout any random numbers being gencrated). If customer n were o begin service at time 7). a
service completion would be scheduled to oceur at time 1, + S, This event scheduling without random-
number generation could be implemented quite easily in a general-purpose programming language or most
simulation Tanguages by using arrays to store the data or reading the data from a file.

When using this technigue. the modeler hopes that the simulation will duplicate as closely as possible
the important events that occurred m the real system. In the model of the Fifth National Bank of Juspar. the
arrival times and serviee durations will exactly duplicate what happened in the real system on that Friday
between T1:00 v and 1:00 par I the model is sufficientiy accurate. then the delays of customers. lengths
of lines, utilizations of servers, and departure times of customers predicted by the model will be close to what
actually happened in the real system. Hois, of course. the model-builder's and model-user’s judgment that
determines the level of aceuracy required.
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To conduct a validation test using historical input data, it is important that all the input data (A, S, ...)
and all the system response data. such as average delay (Z£5). be collected during the same time period.
Otherwise. the comparison of model responses o system responses. such as the comparison of average delay
in the model (¥5) to that in the system (Z-). could be misleading. The responses (Y and Z.) depend both on
the inputs (A, and S,) and on the structure of the system (or modelr. Implementation of this technique could
be difficult for a large system. because of the need for simultaneous data collection of all input variables and
those response variables of primary interest. In some systems. clectronic counters and devices are used to
ease the data-collection task by automatically recording certain types of data. The following example was
hased on two simulation models reported in Carson ¢f af. [1981a. b]. in which simultancous data collection
and the subsequent validation were both completed successtully.

Example 10.3: The Candy Factory _

The production line at the Sweet Lil” Things Candy Factory in Decatur consists of three machines that make.
package. and box their famous candy. One machine (the candy maker) makes and wraps individual pieces of
candy and sends them by conveyor to the packer. The second machine (the packer) packs the individual
pieces into a box. A third machine (the box maker) forms the boxes and supplies them by conveyor to the
packer. The system is illustrated in Figure 10.7.

Each machine is subject to random breakdowns due to jams and other causes. These breakdowns cause
the conveyor to begin to empty or fill. The conveyors between the two makers and the packer are used as a
temporary storage buffer for in-process inventory. In addition to the randomly occurring breakdowns. if the
candy conveyor empties. a packer runtime is interrupted and the packer remains idle until more candy is
produced. If the box conveyor empties because of a long random breakdown of the box machine. an operator
manually places racks of boxes onto the packing machine. If a conveyor fills. the corresponding maker
becomes idle. The purpose of the model is to investigate the frequency of those operator interventions that
require manual loading of racks of boxes as a function of various combinations of individual machines and
lengths of conveyor. Different machines have ditferent production speeds and breakdown characteristics. and
longer conveyors can hold more in-process inventory. The goal is to hold operator interventions to an accept-
able level while maximizing production. Machine stoppages (whether due 1o a full or an empty conveyor)
cause damage to the product. so this is also a factor in production.

A simulation model of the Candy Factory was developed. and a validation effort using historical inputs
was conducted. Engineers in the Candy Factory set aside a 4-hour time slot from 7:00 A.M. to 11:00 Am. to
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Figure 10.7 Production line at the candy factory.
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collect data on an existing production line. For each machine—say, machine i—time to failure and downtime
duration

Tilv D;l- T;Zs D,:{.

were collected. For machine i(i = 1, 2, 3), T}; is the jth runtime (or time to failure), and D, is the successive
downtime. A runtime, 7}, can be interrupted by a tull or empty conveyor (as appropriate), but resumes when
conditions are right. Initial system conditions at 7:00 A.M. were recorded so that they could be duplicated
in the model as initial conditions at time 0. Additionally, system responses of primary interest—the produc-
tion level (Z,), and the number (Z,) and time of occurrence (Z;) of operator interventions—were recorded for
comparison with model predictions.

The system input data, T;; and D;;, were fed into the model and used as runtimes and random downtimes.
The structure of the model determined the occurrence of shutdowns due to a full or empty conveyor and the
occurrence of operator interventions. Model response variables (Y,, i = 1, 2, 3) were collected for compari-
son to the corresponding system response variables (Z, i = 1, 2, 3).

The closeness of model predictions to system performance aided the engineering staff considerably in
convincing management of the validity of the model. These results are shown in Table 10.5. A simple dis-
play such as Table 10.5 can be quite effective in convincing skeptical engineers and managers of a model’s
validity—perhaps more effectively than the most sophisticated statistical methods!

With only one set of historical input and output data, only one set of simulated output data can be
obtained, and thus no simple statistical tests are possible that are based on summary measures; but, if K
historical input data sets are collected, and K observations Z,;, Z;, ..., Zy of some system response variable,
Z,, are collected, such that the output measure Z; corresponds to the jth input set, an objective statistical test
becomes possible. For example, Z; could be the average delay of all customers who were served during the
time the jth input data set was collected. With the K input data sets in hand, the modeler now runs the model
K times, once for each input set, and observes the simulated results W;;, Wy, ..., W, corresponding to Z;.
j=1, ..., K. Continuing the same example, W;; would be the average delay predicted by the model for the
Jth input set. The data available for comparison appears as in Table 10.6.

If the K input data sets are fairly homogeneous, it is reasonable to assume that the K observed differ-
encesd;=Z;~W,,j=1, ..., K, are identically distributed. Furthermore, if the collection of the K sets of input
data was separated in time—say, on different days——it is reasonable to assume that the K differences d,, ..., dx
are statistically independent and, hence, that the differences d,, ..., dy constitute a random sample. In many
cases, each Z; and W, is a sample average over customers, and so (by the Central Limit Theorem) the
differences d; = Z; — W,; are approximately normally distributed with some mean y, and variance o;. The
appropriate statistical test is then a ¢ test of the null hypothesis of no mean difference:

Hy:py=0
versus the alternative of significant difterence:

H, :y,#0

Table 10.5 Validation of the Candy-Factory Model

Response, i System, Z; Model, Y,
1. Production level 897.208 883,150
2. Number of operator 3 3

interventions
3. Time of occurrence 7:22,8:41, 10:10 7:24, 8:42, 10:14




330 DISCRETE-EVENT SYSTEM SIMULATION

Table 10.6 Comparison of System and Model Output Measures for Identical Historical Inputs

Svstem Model Observed Squared Deviation
Input Datu Output, Qutput, Difference, from Mean,

Set Z; W, d d,-d )’
1 Z, Wi d=2,-W, (d, "(?):
2 sz Wiz d: = Zi: - W,: (d: —3)2
3 Z; Wi d3 =Z3—Wa (d1 —3)2
K Zik' WIK dK = ZIK—Wnk (dK - (z):

- 1 ¢ ) 1 & =

d=—>d S =——>(d -dy

K Z ! K-l ,2;( =4

The proper test is a paired ¢ test (Z;, is paired with W;;, each having been produced by the first input data set,
and 50 on). First, compute the sample mean difference, d and the sample variance, S;, by the formulas given
in Table 10.6. Then, compute the ¢ statistic as

_ J—ﬂd

fy = — (10.4)
0 S(l/'\/?

(with u, = 0), and get the critical value 7, x_, from Table A.5, where o is the prespecified significance level
and K — 1 is the number of degrees of freedom. If |ty| > 1,2 ;. reject the hypothesis H, of no mean differ-
ence, and conclude that the model is inadequate. If |ty| < 1, x|, do not reject Hy, and hence conclude that
this test provides no evidence of model inadequacy.

Example 10.4: The Candy Factory, Continued
Engineers at the Sweet Lil’ Things Candy Factory decided to expand the initial validation effort reported in
Example 10.3. Electronic devices were installed that could automatically monitor one of the production
lines, and the validation effort of Example 10.3 was repeated with K = 5 sets of input data. The system and
the model were compared on the basis of production level. The results are shown in Table 10.7.

Table 10.7 Validation of the Candy-Factory Model {Continued)

Input Svstem Model Observed Squared Deviation
Duata Set, Production, Production, Difference, from Mean,
J Z, Wy d (d, -dy
1 897,208 883.150 14,058 7.594 x 107
2 629,126 630.550 1,424 4.580 x 107
3 735.229 741.420 -6,191 1.330 x 107
4 797.263 788.230 9,033 1.362 x 107
5 825.430 814,190 11,240 3.4772 x 107
d=53432 §:=7.580x10




VERIFICATION AND VALIDATION OF SIMULATION MODELS 331

A paired  test was conducted to test H, : u, 0, or equivalently, Hy : £(Z,) = E(W,), where Z, is the system
production level and W, is the production level predicted by the simulated model. Let the level of significance
be a=0.05. Using the results in Table 10.7, the test statistic, as given by equation (10.4), is

5343

=4 382 4
" s,/VK 870585Ys

From Table A.5, the critical value is 1, x_, = f4.25.4 -2 75 Since [to] = 1.37 <t5,25.4 = 2.78, the null hypoth-
esis cannot be rejected on the basis of this test—that is, no inconsistency is detected between system
response and model predictions in terms of mean production level. If A, had been rejected, the modeler
would have searched for the cause of the discrepancy and revised the model. in the spirit of Figure 10.3.

10.3.5 Input - Output Validation: Using a Turing Test

In addition to statistical tests, or when no statistical test is readily applicable. persons knowledgeable about
system behavior can be used to compare model output to system output. For example, suppose that five
reports of system performance over five different days are prepared, and simulation output data are used to
produce five “fake™ reports. The 10 reports should all be in exactly the same format and should contain infor-
mation of the type that managers and engineers have previously seen on the system. The 10 reports are ran-
domly shuffled and given to the engineer. who is asked to decide which reports are fake and which are real.
If the engineer identifies a substantial number of the fake reports, the model builder questions the engineer
and uses the information gained to improve the model. If the engineer cannot distinguish between fake and
real reports with any consistency, the modeler will conclude that this test provides no evidence of model
inadequacy. For further discussion and an application to a real simulation, the reader is referred to Schruben
[1980]. This type of validation test is commonly called a Turing test. Its use as model development proceeds
can be a valuable tool in detecting model inadequacies and, eventually, in increasing model credibility as the
model is improved and refined.

10.4 SUMMARY

Validation of simulation models is of great importance. Decisions are made on the basis of simulation results:
thus, the accuracy of these results should be subject to question and investigation.

Quite often, simulations appear realistic on the surface because simulation models. unlike analytic mod-
els, can incorporate any level of detail about the real system. To avoid being “fooled™ by this apparent real-
1sm, it is best to compare system data to model data and to make the comparison by using a wide variety of
techniques, including an objective statistical test, if at all possible.

As discussed by Van Horn [1969, 1971], some of the possible validation techniques. in order of increas-
ing cost-to-value ratios, include

1. Develop models with high face validity by consulting persons knowledgeable about system behav-
ior on both model structure, model input, and model output. Use any existing knowledge in the form
of previous research and studies, observation, and experience.

2. Conduct simple statistical tests of input data for homogeneity, for randomness, and for goodness of
fit to assumed distributional forms.

3. Conduct a Turing test. Have knowledgeable people (engineers, managers) compare model output to
system output and attempt to detect the difference.
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4. Compare model output to system output bv means of statistical tests.

5. After model development, collect new system data and repeat techniques 2 to 4.

6. Build the new system (or redesign the old one) conforming to the simulation results, collect data on the
new system, and use the data to validate the model (not recommended if this is the only technique used).

7. Do little or no validation. Implement simulation results without validating. (Not recommended.)

It is usually too difficult, too expensive, or too time consuming to use all possible validation techniques
for every model that is developed. It is an important part of the model-builder’s task to choose those valida-
tion techniques most appropriate, both to assure model accuracy and to promote model credibility.
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EXERCISES

1. A simulation model of a job shop was developed to investigate different scheduling rules. To validate
the model, the scheduling rule currently used was incorporated into the model and the resulting output
was compared against observed system behavior. By searching the previous year’s database records, it was
estimated that the average number of jobs in the shop was 22.5 on a given day. Seven independent repli-
cations of the model were run, each of 30 days’ duration, with the following results for average number
of jobs in the shop:

189 220 194 221 198 219 202

(a) Develop and conduct a statistical test to evaluate whether model output is consistent with system
behavior. Use the level of significance & = 0.05.

(b) What is the power of this test if a difference of two jobs is viewed as critical? What sample size is
needed to guarantee a power of 0.8 or higher? (Use a = 0.05.)

2. System data for the job shop of Exercise 1 revealed that the average time spent by a job in the shop was
approximately 4 working days. The model made the following predictions, on seven independent repli-
cations, for average time spent in the shop:

370 421 435 4.13 3.83 432 405

(@) Is model output consistent with system behavior? Conduct a statistical test, using the level of
significance o= 0.01.

(b) Ifitis important to detect a difference of 0.5 day, what sample size is needed to have a power of (0.90?
Interpret your results in terms of model validity or invalidity. (Use o= 0.01.)

3. For the job shop of Exercise 1. four sets of input data were collected over four different 10-day periods.
together with the average number of jobs in the shop (Z,) for each period. The input data were used to
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drive the simulation model for four runs of 10 days each, and model predictions of average number of
jobs in the shop (Y,) were collected, with these results:

i 1 2 3 4
z 207 19 228 194
Y, 246 2L 19.7 249

(a) Conduct a statistical test to check the consistency of system output and model output. Use the level
of significance o= 0.05.

(b) If a difference of two jobs is viewed as important to detect. what sample size is required to guaran-
tee a probability of at least 0.80 of detecting this difference if it indeed exists? (Use a=0.05.)

Find several examples of actual simulations reported in the literature in which the authors discuss vali-
dation of their model. Is enough detail given to judge the adequacy of the validation etfort? If so, com-
pare the reported validation with the criteria set forth in this chapter. Did the authors use any validation
technique not discussed in this chapter? [Several potential sources of articles on simulation applications
include the journal Interfaces and Simulation, and the Winter Simulation Conference Proceedings at
www.informs-cs.org.]

(a) Compare validation in simulation to the validation of theories in the physical sciences.

(b) Compare the issues involved and the techniques available for validation of models of physical sys-
tems versus models of social systems.

(c) Contrast the difficulties, and compare the techniques, in validating a model of a manually operated
warehouse with fork trucks and other manually operated vehicles, versus a model of a facility with
automated guided vehicles. conveyors, and an automated storage-and-retrieval system.

(d) Repeat (c) for a model of a production system involving considerable manual labor and human deci-
sion making, versus a model of the same production system after it has been automated.



Output Analysis for a Single
Model

Output analysis is the examination of data generated by a simulation. Its purpose is either to predict the
performance of a system or to compare the performance of two or more alternative system designs. This
chapter deals with the analysis of a single system; Chapter 12 deals with the comparison of two or more sys-
tems. The need for statistical output analysis is based on the observation that the output data from a
simulation exhibits random variability when random-number generators are used to produce the values of
the input variables—that is, two different streams or sequences of random numbers will produce two sets of
outputs, which (probably) will differ. If the performance of the system is measured by a parameter 6, the
result of a set of simulation experiments will be an estimator 6 of 6. The precision of the estimator @ can
be measured by the standard error of § or by the width of a confidence interval for 8. The purpose of the
statistical analysis is either to estimate this standard error or confidence interval or to figure out the number
of observations required to achieve a standard error or confidence interval of a given size—or both.
Consider a typical output variable, Y, the total cost per week of an inventory system: Y should be treated
as a random variable with an unknown distribution. A simulation run of length 1 week provides a single
sample observation from the population of all possible observations on Y. By increasing the run length, the
sample size can be increased to n observations, Y|, Y,,..., ¥, based on a run length of n weeks. However,
these observations do not constitute a random sample, in the classical sense, because they are not statistically
independent. In this case, the inventory on hand at the end of one week is the beginning inventory on hand
for the next week, and thus the value of Y, has some influence on the value of Y., .. Thus, the sequence of
random variables Y|, ¥,...., Y . could be autocorrelated (i.e., correlated with itself). This autocorrelation,
which is a measure of a lack of statistical independence, means that classical methods of statistics, which
assume independence, are not directly applicable to the analysis of these output data. The methods must be
properly modified and the simulation experiments properly designed for valid inferences to be made.

335
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In addition to the autocorrelation present in most simulation output data, the specification of the initial
conditions of the system at time 0 can pose a problem for the simulation analyst and could influence the
output data. For example, the inventory on hand and the number of backorders at time 0 would most likely
influence the value of Y. the total cost for week I. Because of the autocorrelation, these initial conditions
would also influence the costs (¥,. ..., ¥)) for subsequent weeks. The specified initial conditions, if not
chosen well, can have an especially deleterious effect on attempting to estimate the steady-state (long-run)
performance of a simulation model. For purposes of statistical analysis, the effect of the initial conditions is
that the output observations might not be identically distributed and that the initial observations might not be
representative of the steady-state behavior of the system.

Section 11.1 distinguishes between two types of simulation—transient versus steady state—and defines
commonly used measures of system performance for each type of simulation. Section 11.2 illustrates by
example the inherent variability in a stochastic (i.e., probabilistic) discrete-event simulation and thereby
demonstrates the need for a statistical analysis of the output. Section 11.3 covers the statistical estimation of
performance measures. Section 11.4 discusses the analysis of transient simulations, Section 11.5 the analysis
of steady-state simulations.

11.1 TYPES OF SIMULATIONS WITH RESPECT TO OUTPUT ANALYSIS

In the analyzing of simulation output data, a distinction is made between terminating or transient simulations
and steady-state simulations. A rerminating simulation is one that runs for some duration of time T, where
E is a specified event (or set of events) that stops the simulation. Such a simulated system “opens™ at time 0
under well-specified initial conditions and “closes™ at the stopping time T,. The next four examples are
terminating simulations.

Example 11.1
The Shady Grove Bank opens at 8:30 A.M. (time 0) with no customers present and 8 of the 11 tellers work-
ing (initial conditions) and closes at 4:30 p.M. (time T, = 480 minutes). Here, the event E is merely the fact
that the bank has been open for 480 minutes. The simulation analyst is interested in modeling the interaction
between customers and tellers over the entire day, including the effect of starting up and of closing down at
the end of the day.

Example 11.2
Consider the Shady Grove Bank of Example 11.1, but restricted to the period from 11:30 A.M. (time 0) to
1:30 p.M., when it is especially busy. The simulation run length is T, = 120 minutes. The initial conditions at
time 0 (11:30 A.M.) could be specified in essentially two ways: (1) the real system could be observed at 11:30
on a number of different days and a distribution of number of customers in system (at 1:30 A.M.) could be
estimated. then these data could be used to load the simulation model with customers at time 0; or (2) the
model could be simulated from 8:30 a.M. to 11:30 a.M. without collecting output statistics, and the ending
conditions at 11:30 A.M. used as initial conditions for the 11:30 A.M. to 1:30 P.M. simulation.

Example 11.3
A communications system consists of several components plus several backup components. It is represented
schematically in Figure 11.1. Consider the system over a period of time, T, until the system fails. The stopping
event E is defined by E = {A fails, or D fails, or (B and C both fail)}. Initial conditions are that all components
are new at time 0.
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Figure 11.1 Example of a communications system.

Notice that, in the bank model of Example 11.1, the stopping time T, = 480 minutes is known. but in
Example 11.3, the stopping time T, is generally unpredictable in advance: in fact. T, is probably the output
variable of interest, as it represents the total time until the system breaks down. One goal of the simulation
might be to estimate £(7,), the mean time to system failure.

Example 11.4 :
A widget-manufacturing process runs continuously from Monday mornings until Saturday mornings. The
first shift of each workweek is used to load inventory buffers and chemical tanks with the components and
catalysts needed to make the final product (28 varieties of widget). These components and catalysts are made
continually throughout the week, except for the last shift Friday night. which is used for cleanup and main-
tenance. Thus, most inventory buffers are near empty at the end of the week. During the first shift on
Monday, a buffer stock is built up to cover the eventuality of breakdown in some part of the process. It is
desired to simulate this system during the first shift (time 0 to time T,.= 8 hours) to study various scheduling
policies for loading inventory buffers.

In the simulating of a terminating system, the initial conditions of the system at time 0 must be specified.
and the stopping time 7,—or, alternatively, the stopping event E—must be well defined. Although it is
certainly true that the Shady Grove Bank in Example 11.1 will open again the next day. the simulation
analyst has chosen to consider it a terminating system because the object of interest is one day’s operation.
including start up and close down. On the other hand, if the simulation analyst were interested in some other
aspect of the bank’s operations, such as the flow of money or operation of automated teller machines. then
the system might be considered as a nonterminating one. Similar comments apply to the communications
system of Example 11.3. If the failed component were replaced and the system continued to operate. and.
most important, if the simulation analyst were interested in studying its long-run behavior. it might be
considered as a nonterminating system. In Example 11.3. however. interest is in its short-run behavior. froi
time O until the first system failure at time 7. Therefore, whether a simulation is considered to be terminating
depends on both the objectives of the simulation study and the nature of the system.

Example 11.4 is a terminating system, too. It is also an example of a transient (or nonstationary) simulation:
the variables of interest are the in-process inventory levels, which are increasing from zero or near zero
tat time 0) to full or near full (at time 8 hours).

A nonterminating system is a system that runs continuously, or at least over a very long period of time.
Examples include assembly lines that shut down infrequently. continuous production systems of many difterent
types, telephone systems and other communications systems such as the Internet. hospital emergency rooms.
police dispatching and patrolling operations, fire departments, and continuously operating computer networks.

A simulation of a nonterminating system starts at simulation time 0 under initial conditions defined by
the analyst and runs for some analyst-specified period of time T,.. (Significant problems arise concerning the
specification of these initial and stopping conditions. problems that we discuss later.) Usually. the analyst
wants to study steady-state, or long-run, properties of the system-—that is. properties that are not influenced
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by the initial conditions of the model at time 0. A steady-state simulation is a simulation whose objective is
10 studv long-run, or steady-state, behavior of a nonterminating system. The next two examples are steady-
state simulations.

Example 11.5
Consider the widget-manufacturing process of Example 11.4, beginning with the second shift when the
complete production process is under way. It is desired to estimate long-run production levels and production
efficiencies. For the relatively long period of 13 shitts, this may be considered as a steady-state simulation.
To obtain sufficiently precise estimates of production efticiency and other response variables, the analyst
could decide to simulate for any length of time, 7. (even longer than 13 shifts)—that is, T, 1s not determined
by the nature of the problem (as it was in terminating simulations); rather, it is set by the analyst as one
parameter in the design of the simulation experiment.

Example 11.6
HAL Inc.. a large computer-service bureau, has many customers worldwide. Thus, its large computer system
with many servers, workstations, and peripherals runs continuously, 24 hours per day. To handle an increased
work load. HAL is considering additional CPUs. memory, and storage devices in various configurations.
Although the load on HAL's computers varies throughout the day. management wants the system to be able
to accommodate sustained periods of peak load. Furthermore, the time frame in which HAL's business will
change in any substantial way is unknown, so there is no fixed planning horizon. Thus, a steady-state
simulation at peak-load conditions is appropriate. HAL systems staft develops a simulation model of the
existing system with the current peak work load and then explores several possibilities for expanding capacity.
HAL is interested in long-run average throughput and utilization of each computer. The stopping time, T .
is determined not by the nature of the problem, but rather by the simulation analyst. either arbitrarily or with
a certain statistical precision in mind.

11.2 STOCHASTIC NATURE OF OUTPUT DATA

Consider one run of a simulation model over a period of time [0, T,]. Since the model is an input-output
transformation. as illustrated by Figure 10.5. and since some of the model input variables are random vari-
ables. it follows that the model output variables are random variables. Three examples are now given to illus-
trate the nature of the output data from stochastic simulations and to give a preliminary discussion of several
important properties of these data. Do not be concerned if some of these properties and the associated
terminology are not entirely clear on a first reading. They will be explained carefully later in the chapter.

Example 11.7:  Able and Baker, Revisited
Consider the Able—Baker technical-support call center problem (Example 2.2) which involved customers
arriving according to the distribution of Table 2.11 and being served either by Able, whose service-time
distribution is given in Table 2.12. or by Baker. whose service-time distribution is given in Table 2.13. The
purpose of the simulation is to estimate Able’s utilization. p. and the mean time spent in the system per
customer. w, over the tirst 2 hours of the workday. Therefore, each run of the model is for a 2-hour period.
with the system being empty and idle at time 0. Four statistically independent runs were made by using four
distinct streams of random numbers to generate the interarrival and service times. Table 11.1 presents the
results. The estimated utilization for run r is given by P, and the estimated average system time by w,
(i.e.. W is the sample average time in system for all customers served during run r). Notice that, in this
sample. the observed utilization ranges from 0.708 to 0.875 and the observed average system time ranges trom
3.74 minutes o 4.53 minutes. The stochastic nature of the output data {p,. p,. Py, p,} and (W, Wy, Wi w, |
is demonstrated by the results in Table 11.1.
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Table 11.1 Results of Four Independent Runs of 2-Hour
Duration of the Able—Baker Queueing Problem

Run, Able s Unilization Average System Time,
r p, W, (Minutes)
1 0.808 3.74
2 0.875 4.53
3 0.708 3.84
L 4 0.842 3.98 J

There are two general questions that we will address by a statistical analysis—say. of the observed
utilizations p,, r=1,..., 4:

L. estimation of the true utilization p=E(p,) by a single number, called a point estimate;
2. estimation of the error in our point estimate, in the form either of a standard error or of a confidence
interval.

These questions are addressed in Section 11.4 for terminating simulations. such as Example 11.7. Classical
methods of statistics may be used because f’,, /3 p, and [3, constitute a random sample—that is, they are
independent and identically distributed. In addition. p = £ ﬁ,) is the parameter being estimated. so cach P,
is an unbiased estimate of the true mean utilization p- The analysis of Example 11.7 is considered in Example
I1.10 of Section 11.4. A survey of statistical methods applicable to terminating simulations is given by Law
[1980]. Additional guidance may be found in Alexopoulos and Seila [1998]. Kleijnen [1987]. Law and
Kelton [2000], and Nelson [2001].

The next example illustrates the effects of correlation and initial conditions on the estimation of long-
run mean measures of performance of a system.

Example 11.8
Consider a single-server queue with Poisson arrivals at an average rate of one every 10 minutes (A = 0.1 per
minute) and service times that are normally distributed. with mean 9.5 minutes and standard deviation 1.75
minutes.' This is an M/G/1 queue, which was described and analyzed in Section 6.4.1. By Equation (6.11),
the true long-run server utilization is p = AE(S) = (0.1)(9.5) = 0.95. We typically would not need 1o simulate
such a system, because we can analyze it mathematically: but we simulate it here to illustrate difficulties that
oceur in trying to estimate the long-run meun queue length, L, . defined by Equation (6.4).

Suppose we run a single simulation for a total of S000 minutes and observe the output process L {(1),
0 <1 <5000}, where LQ(I) is the number of customers in the waiting line at time f minutes. To make this
continuous-time process a little easier to analyze, we divide the time interval [0, 5000) into five equal subin-
tervals of 1000 minutes and compute the average number of customers in queue for each interval individu-
ally. Specifically, the average number of customers in the queue from time (j — 11000 to j(1000) is

| SO0 \ ' ) .
Y’ *m-“u--hlw)[@(”dﬁ J=L..5 (1D

'The range of a service time is restricted to +5 standard deviations, to exclude the possibility of a negative service time. that range
covers well over 99.999% of the normal distribution.
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Thus. ¥, = IHW L, (1)dr /1000 is the time-weighted average number of customers in the queue from time 0 to
0

time 1000, Y, = J.MM Lu(’)d’ /1000 is the same average over [ 1000, 2000), and so on. Equation (1 1.1) is a special
- HOOO

case of Equation (6.4). The observations {Y,, ¥,. Y, Y,, Y.} provide an example of “batching” of raw simula-
tion data—in this case. L, {(1, 0 <1 <5 )()()}—and the Y are called baich means. The use of batch means in
analyzing output data is Hlscussad in Section | 1.5.\. For now, simply notice that batching transforms the
continuous time queue-length process. {L (1), 0 < < 5000}, into a discrete-time batch-means process
{Y.i=1.2.3.4.5} where each Y, is an LS[lde()f of L

The xlmulauon results of lhree statistically mdependent replications are shown in Table 11.2. Each
replication. or run. uses a distinct stream of random numbers. For replication 1, Y, is the batch mean for
baich j (the jth interval). as defined by Equation (11.1); similarly. Y, and Y, are defined for batch j for
replications 2 and 3, respectively. Table 11.2 also gives the sample mcan over eaLh replication, Y. ., for reph-
cations ~ = 1,2.3.7 That is,

Y. r=123 (11.2)

It probably will not surprise you that. if we take batch averages first, then average the batch means, or just
average everything together. we get the same thing. In other words. each Y . is equivalent to the time average
over the entire interval [0, 5000) for replication r, as given by Equation (6.4).

Table 11.2 illustrates the inherent variability in stochastic simulations both within a single replication
and across different replications. Consider the variability within replication 3, in which the average queue
length vver the batching intervals varies from a low of ¥, = 7.67 customers during the first 1000 minutes to
a high of ¥, = 20.36 customers during the third subinterval of 1000 minutes. Table 11.2 also shows the
variability across replications. Compare Y st Y,  to Y. the average queue lengths over the intervals 4000
to 5000 minutes across all three replications.

Suppose. for the moment. that a simulation analyst makes only one replication of this model and gets
the result ¥.=3.75 customers as an estimate of mean queue length. L ,. How precise is the estimate? This
question is usually answered by attempting to estimate the standard etror of ¥, or by forming a confidence
interval. The simulation analyst might think that the five batch means ¥,,, ¥,,. .... ¥ ; could be regarded as a
random sample; however, the terms in the sequence are not independent, and in facl they are autocorrelated,

Table 11.2 Batched Average Queve Length for Three
Independent Replications

Replication
Buatching
Interval Buarch, . 2, 3.
(Minutes) J 'U Y:/ Y.%,
10, 1000) 1 3.61 291 7.67
[ 1000. 2000) 2 3.21 9.00 19.53
2000, 3000) 3 2.18 16.15 20.36
[3000. 4000) 4 6.92 24.53 8.11
14000, 5000) N 2.82 25.19 12.62
[0. 5000) Y.=375 Y,.=15.56 Y, =13.66

“The dot. as in the subscript - indicates summation over the second subscript; the bar, as in Yr indicates an average.
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because all of the data are obtained from within one replication. If ¥, . ... ¥, were mistakenly assumed to
be independent observations, and their autocorrelation were ignored. the usual classical methods of statistics
might severely underestimate the standard error of ¥,.. possibly resulting in the simulation analyst’s thinking
that a high degree of precision had been achieved. On the other hand. the averages across the three replica-
tions, )7| )7 and )7z can be regarded as independent observations. because they are derived from three
different replications.

Intuitively, ¥, and Y|, are correlated because in replication 1 the queue length at the end of the time
interval [0, 1000) is the queue length at the beginning of the interval [1000, 2000)—similarly for any two
adjacent batches within a given replication. If the system is congested at the end of one interval, it will be
congested for a while at the beginning of the next time interval. Similarly, periods of low congestion tend to
follow each other. Within a replication, say for Y, Y, .... Y high values of a batch mean tend to be
followed by high values and low values by low. This tendency of adjacent observations to have like values
is known as positive autocorrelation. The effect of ignoring autocorrelation when it is present is discussed in
more detail in Section 11.5.2.

Now suppose that the purpose of the M/G/1 queueing simulation of Example 11.8 is to estimate “steady-
state” mean queue length, that is, mean queue length under “typical operating conditions over the long run.”
However, each of the three replications was begun in the empty and idle state (no customers in the queue and
the server available). The empty and idle initial state means that, within a given replication. there will be a
higher-than- “typical” probability that the system will be uncongested for times close to 0. The practical
effect is that an estimator of L,—say. f for replication r—will be biased low [i.c.. E(Y .) < L,]. The extent
of the bias decreases as the run length increases. but. for short-run-length simulations with atypical initial
conditions, this initialization bias can produce misleading resuits. The problem of initialization bias is
discussed further in Section 11.5.1.

11.3 MEASURES OF PERFORMANCE AND THEIR ESTIMATION

Consider the estimation of a performance parameter, 8 (or @), of a simulated system. It is desired to have a
point estimate and an interval estimate of 8 (or ¢). The length of the interval estimate is a measure of the
error in the point estimate. The simulation output data are of the form {¥,. Y,..... ¥ } for estimating 6: we
refer to such output data as discrete-time data, because the index n is discrete valued. The simulation output
data are of the form {¥(1), 0 <t <T,} for estimating ¢: we refer to such output data as continuous-time data.
because the index 7 is continuous valued. For example, ¥, might be the delay of customer i. or the total cost
in week 7; ¥(r) might be the queue length at time 1. or the number of backlogged orders at time ¢. The param-
eter Bis an ordinary mean; ¢ will be referred to as a time-weighted mean. Whether we call the performance
parameter 6 or ¢ does not really matter; we use two different symbols here simply to provide a distinction
between ordinary means and time-weighted means.

11.3.1 Point Estimation

The point estimator of 6 based on the data {Y, ..., Y } is defined by

e
~ 1 n

6==3Y (11.3)
n i=l

where @ is a sample mean based on a sample of size n. Computer simulation languages may refer to this as
a “discrete-time.” “collect,” “tally” or “observational™ statistic.

2
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The point estimator 6 is said to be unbiased for @if its expected value is 8—that is, if

E©)=0 (11.4)
In general, however.

and E(6) — @ is called the bias in the point estimator 6. It is desirable to have estimators that are unbiased.
or. if this is not possible, have a small bias relative to the magnitude of 6. Examples of estimators of the form
of Equation (11.3) include w and W, of Equations (6.5) and (6.7). in which case ¥, is the time spent in the
(sub)system by customer /.

The point estimator of ¢ based on the data {¥(r), 0 <t < T,}. where T, is the simulation run length. is
defined by

~ 1 ¢7,
(D:—T—L Y(t)dr (11.6)
]

and is called a time average of Y(#) over |0, 7,]. Simulation languages may refer to this as a “continuous-
time,” “‘discrete-change™ or “time-persistent” statistic. In general,

E6)%0 (11.7)

and ¢ is said to be biased for ¢. Again, we would like to obtain unbiased or low-bias estimators. Examples
of time averages include L and L, of Equations (6.3) and (6.4) and Y, of Equation (11.1).

Generally. 6 and ¢ are regarded as mean measures of performance of the system being simulated. Other
measures usually can be put into this common framework. For example, consider estimation of the proportion
of days on which sales are lost through an out-of-stock situation. In the simulation, let

_ |1, if out of stock on day
10, otherwise

With n equal to the total number of days, 6 defined by Equation (11.3) is a point estimator of 6, the propor-
tion of out-of-stock days. For a second example. consider estimation of the proportion of time queue length
is greater than & customers (for example, k, = 10). If L, (1) represents simulated queue length at time ¢, then
(in the simulation) define

{1, if L, (1) >k,

|0, otherwise

Then 6. as defined by Equation (11.6), is a point estimator of ¢. the proportion of time that the queue length
is greater than &, customers. Thus. estimation of proportions or probabilities is a special case of the estima-
tion of means.

A performance measure that does not fit this common framework is a quantile or percentile. Quantiles
describe the level of performance that can be delivered with a given probability, p. For instance, suppose that
Y represents the delay in queue that a customer experiences in a service system. measured in minutes. Then
the 0.85 quantile of Y is the value 6 such that

Pr{Y<8}=p (11.8)

where p = 0.85 in this case. As a percentage, 6 is the 100pth or 85th percentile of customer delay. Therefore.
85% of all customers will experience a delay of 6 minutes or less. Stated differently. a customer has only



OUTPUT ANALYSIS FOR A SINGLE MODEL 343

a 0.15 probability of experiencing a delay of longer than & minutes. A widely used performance measure is
the median, which is the 0.5 quantile or 50th percentile.

The problem of estimating a quantile is the inverse of the problem of estimating a proportion or probability.
Consider Equation (11.8). In estimating a proportion. 8 is given and p is to be estimated; but, in estimating
a quantile, p is given and 0 is to be estimated.

The most intuitive method for estimating a quantile is to form a histogram of the observed values of Y.
then find a value 6 such that 100p% of the histogram is to the left of (smaller than) 8. For instance, it we
observe n = 250 customer delays { Y..... Yy} then an estimate of the 85th percentile of delay is a value 6
such that (0.85)(250) = 212.5 = 213 of the observed values are less than or equal to 8. An obvious estimate
is. therefore, to set 8 equal to the 213th smallest value in the sample (this requires sorting the data). When
the output is a continuous-time process. such as the queue-length process {L,1). 0 <1< T, }. then a histogram
gives the fraction of rime that the process spent at each possible level (queue length in this example).
However. the method for quantile estimation remains the same: Find a value 6 such that 100p% of the
histogram is to the left of .

11.3.2 Confidence-Interval Estimation

To understand confidence intervals fully. it is important to understand the difference between a measure of
error and a measure of risk. One way to make the difference clear is to contrast a confidence interval with a
prediction interval (which is another useful output-analysis tool).

Both confidence and prediction intervals are based on the premise that the data being produced by the
simulation is represented well by a probability model. Suppose that model is the normal distribution with
mean 6 and variance 67, both unknown. To make the example concrete, let Y. be the average cycle time for
parts produced on the ith replication (representing a day of production) of the simulation. Therefore. 8 is the
mathematical expectation of Y., and & is represents the day-to-day variation of the average cvcle time.

Suppose our goal is to estimate 6. If we are planning o be in business for a long time, producing parts
day after day. then 6 is a relevant parameter. because it is the long-run mean daily cycle time. Our average
cycle time will vary from day to day. but over the long run the average of the averages will be close to 6.
"Y.IR.

The natural estimator for 8 is the overall sample mean of R independent replications. ¥ .. = z ,
But Y.. is not 6, it is an estimate. based on a sample, and it has error. A confidence interval is a measure of

that error. Let

be the sample variance across the R replications. The usual confidence interval, which assumes the Y. are
normally distributed. is

Y. +¢ 3

@lR T [
VR

where 1., ,_, is the quantile of the 7 distribution with R — 1 degrees of freedom that cuts off /2 of the area
of each tail. (See Table A.5.) We cannot know for certain exactly how far Y. is from @, but the confidence inter-
val attempts to bound that error. Unfortunately. the confidence interval itself may be wrong. A confidence
level. such as 95%. tells us how much we can trust the interval to actually bound the error between Y.. and 6.
The more replications we make. the less error there is in ¥ ... and our confidence interval reflects that because

loing ,S/\/E will tend to get smaller as R increases. converging to 0 as R goes to infinity.
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Now suppose we need to make a promise about what the average cycle time will be on a particular day.
A good guess is our estimator Y ... but it is unlikely to be exactly right. Even @ itself, which is the center of the
distribution. is not likely to be the actual average ¢ycle time on any particular day, because the daily average
cycle time varies. A prediction interval, on the other hand, is designed to be wide enough to contain the actual
average cycle time on any particular day with high probability. A prediction interval is a measure of risk; a
confidence interval ts a measure of error.

The normal-theory prediction interval is

= [
Y.+ r“,:‘,ﬁs\ﬂ +=

The length of this interval will not go to () as R increases. In fact, in the Iimit it becomes
ei :n/?o-

to reflect the fact that, no matter how much we simulate, our daily average cycle time still varies.

In summary, a prediction interval is a measure of risk, and a confidence interval is a measure of error.
We can simulate away error by making more and more replications, but we can never simulate away risk,
which is an inherent part of the system. We can, however, do a better job of evaluating risk by making more
replications.

Example 11.9
Suppose that the overall average of the average cycle time on 120 replications of a manufacturing simula-
tion is 5.80 hours. with a sample standard deviation of 1.60 hours. Since t, ., = 1.98, 2 95% confidence
interval for the long-run expected daily average cycle time is 5.80 £ 1.98(1 60//120) or 5.80 + 0.29 hours.
Thus. our best guess of the long-run average of the daily average cycle times is 5.80 hours, but there could
be as much as £0.29 hours error in this estimate.

On any particular day, we are 95% confident that the average cycle time for all parts produced on that

day will be
/ 1
5801 .98(1.6())V 1+ 0

or 5.80 = 3.18 hours. The +3.18 hours reflects the inherent variability in the daily average cycle times and
the fact that we want to be 95% confident of covering the actual average cycle time on a particular day (rather
than simply covering the long-run average).

11.4 OUTPUT ANALYSIS FOR TERMINATING SIMULATIONS

Consider a terminating simulation that runs over a simulated time interval [0, 7, ] and results in observations
Y. ¥ . The sample size. n. may be a fixed number. or it may be a random variable (say. the number of
observations that occur during time 7,.). A common goal in simulation is to estimate

9:~E[iix]

n i=1
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When the output data are of the form {¥(r), 0 <t < T,}. the goal is to estimate

¢=E(%J)”Y(r)drj

The method used in each case is the method of independent replications. The simulation is repeated a total
of R times, each run using a different random number stream and independently chosen initial conditions
(which includes the case that all runs have identical initial conditions). We now address this problem.

11.4.1 Statistical Background

Perhaps the most confusing aspect of simulation output analysis is distinguishing within-replication data
from across-replication data, and understanding the properties and uses of each. The issue can be further
confused by the fact that simulation languages often provide only summary measures, like sample means.
sample vartances, and confidence intervals, rather than all of the raw data. Sometimes these summary measures
are all the simulation language provides without a lot of extra work.

To illustrate the key ideas, think in terms of the simulation of a manufacturing system and two
performance measures of that system, the cycle time for parts (time from release into the factory until
completion) and the work in process (WIP. the total number of parts in the factory at any time). In computer
applications, these two measures could correspond to the response time and the length of the task queuc at
the CPU: in a service application. they could be the time to fulfill a customer’s request and the number of
requests on the “to do™ list; in a supply-chain application, they could be the order fill time and the inventory
Jevel. Similar measures appear in many systems.

Here is the usual set up for something like cycle time: Let ¥, be the cycle time for the jth part produced
in the ith replication. If each replication represents two \hlfts of production, then the number of parts
produced in each replication might differ. Table 11.3 shows. symbolically. the results of R replications.

The across-replication data are formed by summarizing within-replication data: ¥ Y. is the sample mean
of the n, cycle times from the ith replication, S” is the sample variance of the same data, and

S
H =i, = (11.9)

allm -] —
n,

is a confidence-interval half-width based on this dataset.
From the across-replication data, we compute overall statistics, the average of the daily cycle time averages

R
PNE (11.10)

Table 11.3  Within- and AcrossReplication
Cycle-Time Data

Within-Rep Data Across-Rep Data
Y 12 Iy Y,..S,f‘.h'I
Y Y, Y., Y—'_,..S_J‘.H:
Vi Yio 'R”,\ Voo S Hy
Y..S$'H
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the sample variance of the daily cycle time averages

- ] = S o

§ =N (.Y (11.11)
and finally, the confidence-interval half-width

H (11.12)

S
=gk ﬁ

The quantity SR is the standard error, which is sometimes interpreted as the average error in Y.. as an esti-
mator of 8. Notice that S is not the average of the within-replication sample variances, 87 rather, it is the
sample variance of the within-replication averages V.Y .. Y.

Within a replication, work in process (WIP) is a continuous-time output. denoted Y (7). The stopping
time for the ith replication. 7, , could be a random variable. in general: in this example. it is the end of the
second shift. Table 1.4 is an abstract representation of the data produced.

The within-replication sample mean and variance are defined appropriately tor continuous-time data:

S 1 ¢,
y.__Tj(, Y (1) dt (11.13)

and

S = [ =Ty d (11.14)

A definition for H, is more problematic. but, to be concrete, take it to be

S
H =z,.—. (11.15)
\./II
Frankly. it is difficult to conceive of a situation in which H is relevant. a topic we discuss later. Although the
definitions of the within-replication data change for continuous-time data, the across-replication statistics are
unchanged. and this is a critical observation.

Table 11.4 Within- and AcrossReplication

WIP Data
Within-Rep Data Across-Rep Data
YAN.0<r <7, Y.S H
YUn.0<r<T, Y..S$.H,
Yan.0<r<T, Y. Sp H,

Y. S5 F
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Here are the key points that must be understood:

* The overall sample average. Y .., and the individual replication sample averages. Y are always
unbiased estimators of the expected daily average cycle time or daily average WIP.

* Across-replication data are independent (since they are based on different random numbers). are
identically distributed (since we are running the same model on each replication), and tend to be
normally distributed if they are averages of within-replication data, as they are here. This implies that
the confidence interval ¥..+ H is often pretty good.

* Within-replication data, on the other hand. might have none of these properties. The individual cycle
times may not be identically distributed (if the first few parts of the day find the system empty); they
are almost certainly not independent (because one part follows anolhcr) and whether they are
normally distributed is difficult to know in advance. For this reason, S’ and H_. which are computed
under the assumption of independent and identically distributed (i.i.d.) data, tend not to be useful
(although there are exceptions). B

* There are situations in which Y.. and Y. are valid estimators of the expected cycle time for an indi-
vidual part or the expected WIP at any point in time, rather than the daily average. (See Section 11.5
on steady-state simulations.) Even when this is the case, the confidence interval ¥..+ H is valid. and
Y.+ H, is not. The difficulty occurs because S” is a reasonable estimator of the variance of the cycle

time, but Sf/n, and SI.:/TE_ are not good estimators of the Var[f. J—more on this in Section 11.5.2.

Example 11.10: The Able-Baker Problem, Continued
Consider Example 11.7, the Able-Baker technical-support call center problem, with the data for R = 4
replications given in Table 11.1. The four utilization estimates, ,. are time averages of the form of Equation
(11.13). The simulation produces output data of the form

r

v 1, if Able is busy at time ¢
)=
0, otherwise

and p, =7,. as computed by Equation (11.13) with T, = 2 hours. Similarly, the four average system times.

Wy ... W,. are analogous to ¥ . of Table 11.3.: where Y is the actual time spent in system by customer i on
rephcat]on r.

First, suppose that the analyst desires a 95% confidence interval for Able’s true utilization, p. Using
Equation (11.10) compute an overall point estimator

= .~ O 875+0.7 .842
),-.:p:()808+()87 ZO7)8+0 ~0.808

Using Equation (11.11), compute its estimated variance:

g2 (0.808—0.808)° +--- +(0.842 - 0.808)°
4-1

=(0.072)"

Thus, the standard error of p=0.808 is estimated by s.e. (p)= S/\/—— 0.036. Obtain 7, .. ;= 3.18 from
Table A.5, and compute the 95% confidence interval half-width by (11.12) as

S

H=1,,—=
253
Ja

=(3.18)(0.036)=0.114
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giving 0.808 £ 0.114 or. with 95% confidence,
0.694 < p<0.922

In a similar fashion. compute a 95% confidence interval for mean time in system w:

. 3.74+453+3.84+3.98

w= = 4.02 minutes
4
(3.74-4.02) +..- —4.02) :
52:(3.74 4.02)y +---+(3.98—-4.02) — (0352
-1
so that
S
H=t,,..—==(3.18)(0.176) = 0.560
or

4.02-056<w<4.02=0.56

Thus. the 95% contidence interval for w is 3.46 < w < 4.58.

11.4.2 Confidence Intervals with Specified Precision

By Expression (11.12). the half-length H of a 100(1 — @)% confidence interval for a mean 0. based on the ¢
distribution, s given by

H=1

S
ailR-1 :/:RT

where S is the sample variance and R is the number of replications. Suppose that an error criterion € is

specitied: in other words. it is desired to estimate 6 by Y.. to within e with high probability—say, at least
I — o Thus, it is desired that a sufficiently large sample size. R, be taken to satisty

P(

Y.-8lke)zl-a

When the sample size. R, is fixed, no guarantee can be given for the resulting error. But it the sample size
can be increased, an error criterion can be specified.

Assume that an initial sample of size R, replications has been observed—that is, the simulation analyst
initially makes R, independent replications. Wc must have R, 2 2. with 10 or more bemg desirable. The R,
replications will bg used to obtain an initial estimate S; of the population variance ¢*. To meet the half-
length criterion, a sample size R must be chosen such that R 2 R, and

S
H=t ., —F=<¢€ (11.16)

ai2R-1
JR

Solving for K in Inequality (11.23) shows that R is the smallest integer satisfying R 2 R, and

RZ(I(.'/Z.I\’ I‘Sl,\) (11.17)
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Since t,, ., 2z, aninitial estimate for R is given by
S‘ N
R fusde (11.18)
€
where ., is the 100(1 — a/2) percentage point of the standard normal distribution from Table A.3. And
since la24-1 = Sa2 for large R (say, R > 50). the second inequality for R is adequate when R is large. After

determining the final sample size, R. collect R — R, additional observations (i.e., make R — R additional repli-
cations, or start over and make R total repllcatlons) and form the 100(1-a)% confidence mterval for 6 by

<O<Y +1 (11.19)

(:/‘RI [ - al2 k-1 /

where ¥ . and S? are computed on the basis of all R replications. ¥.. by Equation (11.10), and $? by Equation
(I1L.11). The half-length of the confidence interval given by Inequality (11.19) should be approximately. € or
smaller: however, with the additional R - R observations. the variance estimator S could differ somewhat
from the initial estimate S. possibly causing the half-length to be greater than desired. If the confidence
interval (11.19) is too large, the procedure may be repeated, using Inequality (11.17). to determine an even
larger sample size.

Example 11.11
Suppose that it is desired to estimate Able’s utilization in Example 11.7 to within +0.04 with probability
0.95. An initial sample of size R =4 is taken, with the results given in Table 11.1. An initial estimate of the
population variance is S = (0.072)° = 0.00518. (See Example 11.10 for the relevant data.) The error criterion
is € = 0.04, and the confidence coefficient is | — ot = 0.95. From Inequality (11.18), the final sample size
must be at least as large as

S5 (1.96)°(0.00518)

S =12.44
e (0.04)°

Next, Inequality (11.17) can be used to test possible candidates (R =13, 14, ..} for tinal sample size. as follows:

R 13 14 5
Imm ey 218 216 204
302 "f’ I“S(;

P 1539 1510 1483

Thus, R =15 is the smallest integer satistying Inequality (11.17). so R = R, = 15 — 4 = 11 additional repli-
cations are needed. After obtaining the additional outputs. we would again need to compute the half-width
H to ensure that it is as small as is desired.

11.4.3 Quantiles

To present the interval estimator for quantiles, it is helpful to review the interval estimator for a mean in the
special case when the mean represents a proportion or probability, p. In this book, we have chosen to treat a
proportion or probability as just a special case of a mean. However, in many statistics texts, probabilities are
treated separately.
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When the number of independent replications Y, ..., ¥, is large enough that 7e/2,-1 = Zap2, the confidence
interval for a probability p is often written as

where p is the sample proportion (tedious algebra shows that this formula for the half-width is precisely
equivalent to Equation (11.12) when used in estimating a proportion).

As mentioned in Section 11.3, the quantile-estimation problem is the inverse of the probability-estimation
problem: Find 6 such that Pr{Y < 8} = p. Thus, to estimate the p quantile, we find that value 8 such that 100p%
of the data in a histogram of Y is to the left of 8 (or stated differently, the npth smallest value of ¥ ,..., ¥}).

Extending this idea, an approximate (1 — )100% confidence interval for 6 can be obtained by finding
two values: 6, that cuts of 100p, % of the histogram and 6 that cuts off 100p % of the histogram, where

_ o pi=p)

P‘ p Na/l\/;R—l
p(l-p)

P, = +:a/2\/Tr (11.20)

{Recall that we know p.) In terms of sorted values, é, is the Rp, smallest value (rounded down) and é“ is the

Rp, smallest value (rounded up), of ¥\.....Y,.

Example 11.12
Suppose that we want to estimate the 0.8 quantile of the time to failure (in hours) for the communications
system in Example 11.3 and form a 95% confidence interval for it. A histogram of R = 500 independent
replications is shown in Figure 11.2.

[ AR DRAREARRN \ ] I T I
2000 6000 10000 14000 18000 22000

Y

Figure 11.2 Failure data in hours for 500 replications of the communications system.
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The point estimator is 6 = 1644 hours, because 80% of the data in the histogram is to the left of 4644.
Equivalently, it is the 500 x 0.8 = 400th smallest value of the sorted data.
To obtain the confidence interval we first compute

- 0.8(0.2
P, =p—:(,,w\[p( P) :0,8—1.96\/— 8(02) _ ) 765
N R-1 9

1— ).8(0.2
p.=p+: \}(ﬁg =0.8+1.96, 2802 ¢35
-1 499

Sarn
R

The lower bound of the confidence interval is é = 4173 (the 500x p =382nd smallest value, rounding

down): the upper bound of the confidence interval is Q = 5119 hours (the 500 x p = 418th smallest value.
rounding up).

11.4.4 Estimating Probabilities and Quantiles from Summary Data

Knowing the equation for the confidence interval half-width is important if all the simulation software
provides is Y.. and H and you need to work out the number of replications required to get a prespecified
precision, or if you need to estimate a probability or quantile. You know the number of replications. so the
sample standard deviation can be extracted from # by using the formula

_HJR

t

S

«/2.R-1

With this information, the methed in Section 11.4.2 can be employed.

The more ditficult problem is estimating a probability or quantile from summary data. When all we have
available is the sample mean and confidence-interval halfwidth (which gives us the sample standard devia-
tion). then one approach is to use a normal-theory approximation for the probabilities or quantiles we desire.
specifically

Pr{¥ <c} -:Pr{zs "_gy“}

and

The following example illustrates how this is done.

Example 11.13
From 25 replications of the manufacturing simulation, a 90% confidence interval for the daily average WIP
is 218 £ 32. What is the probability that the daily average WIP is less than 350? What is the 85th percentile
of daily average WIP?
First, we extract the standard deviation:
CHVE 3225

S = =93
1 1.71

0.08.24
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Then, we use the normal approximations and Table A.3 to get

_ 3502
Pr{Y, <350} = Pr{Z < A~(93—18} =Pr{Z<142}=092

and

6= ¥.412,,.5=218+1.04(93)= 315 parts

There are shortcomings to obtaining our probabilities and quantiles this way. The approximation depends
heavily on whether the output variable of interest is normally distributed. If the output variable itself is not an
average. then this approximation is suspect. Therefore, we expect the approximation to work well for state-
ments about the average daily cycle time. for instance, but very poorly for the cycle time of an individual part.

11.5 OUTPUT ANALYSIS FOR STEADY-STATE SIMULATIONS

Consider a single run of a simulation model whose purpose is to estimate a steadv-state. or long-run, charac-
teristic of the system. Suppose that the single run produces observations Y|, Y,, ..., which, generally, are samples
of an autocorrelated time series. The steady-state (or long-run) measure of performance, 6, is defined by

n

I
6=lim-> Y (11.21

n—e gy A

with probability 1, where the value of 6 1s independent of the initial conditions. (The phrase “*with probability 1™
means that essentially all simulations of the model. using different random numbers, will produce series
Y. 1 =1.2... whose sample average converges to €.) For example. if ¥, was the time customer i spent talk-
ing to an operator, then 6 would be the long-run average time a customer spends talking to an operator; and.
because @is defined as a limit, it is independent of the call center’s conditions at time 0. Similarly, the steady-
state performance for a continuous-time output measure { ¥(#), t 2 0}, such as the number of custonsers in the
call center’s hold queue, is defined as

1o

o= 1],137_-[0 Y(r) dt

. .

with probability 1.
Of course, the simulation analyst could decide to stop the simulation after some number of observations—

sav. n—have been collected: or the simulation analyst could decide to simulate for some length of time 7,
that determines n (although 7 may vary from run to run). The sample size n (or T,) is a design choice; it 1s
not inherently determined by the nature of the problem. The simulation analyst will choose simulation run
length (n or T,.) with several considerations in mind:

1. Any bias in the point estimator that is due to artificial or arbitrary initial conditions. (The bias can be
severe if run length is too short, but generally it decreases as run length increases.)

2. The desired precision of the point estimator, as measured by the standard error or confidence interval
half-width.

3. Budget constraints on computer resources.

The next subsection discusses initialization bias and the following subsections outline two methods of
estimating point-estimator variability. For clarity of presentation, we discuss only estimation of 6 from u
discrete-time output process. Thus. when discussing one replication (or run), the notation
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Y. Y. Y,

will be used: if several replications have been made. the output data for replication r will be denoted by

VoYL Y (11.22)

11.5.1 Initialization Bias in Steady-State Simulations

There are several methods of reducing the point-estimator bias caused by using artificial and unrealistic initial
conditions in a steady-state simulation. The first method 1s to initialize the simulation in a state that is more
representative of long-run conditions. This method is sometimes called intelligent initialization. Examples
include

1. setting the inventory levels. number of backorders, and number of items on order and their arrival
dates in an inventory simulation:

2. placing customers in queue and in service in a queueing simulation;

3. having some components failed or degraded in a reliability simulation.

There are at least two ways to specify the initial conditions intelligently. If the system exists, collect data
on it and use these data to specify more nearly typical initial conditions. This method sometimes requires a large
data-collection effort. In addition. if the system being modeled does not exist—for example. if it is a variant of
an existing system—this method is impossible to implement. Nevertheless, it is recommended that simulation
analysts use any available data on existing systems to help initialize the simulation. as this will usually be better
than assuming the system to be “completely stocked.” “empty and idle.” or “*brand new™ at time (.

A related idea is to obtain initial conditions from a second model of the system that has been simplified
enough to make it mathematically solvable. The queueing models in Chapter 6 are very useful for this
purpose. The simplified model can be solved to find long-run expected or most likely conditions—such as the
expected number of customers in the queue—and these conditions can be used to initialize the simulation.

A second method to reduce the impact of initial conditions. possibly used in conjunction with the first,
is to divide each simulation run into two phases: first, an initialization phase. from time 0 to time 7,,, followed
by a data-collection phase from time T}, to the stopping time 7 + T,—that is, the simulation begins at time
0 under specified initial conditions /, and runs for a specified period of time 7,. Data collection on the
response variables of interest does not begin until time 7, and continues until time 7, + T,. The choice of T,
1s quite important, because the system state at time 7,, denoted by /, should be more nearly representative of
steady-state behavior than are the original initial conditions at time 0, /. In addition, the length T, of the
data-collection phase should be long cnough to guarantee sufficiently precise estimates of steady-state
behavior. Notice that the system state. /, at time 7| is a random variable and to say that the system has reached
an approximate steady state is to say that the probability distribution of the system state at time 7, Is
sufficiently close to the steady-state probability distribution as to make the bias in point estimates of response
variables negligible. Figure 11.3 illustrates the two phases of a steady-state simulation. The effect of starting
a simulation run of a queueing model 1n the empty and idle state, as well as several useful plots to aid the
simulation analyst in choosing an appropriate value of T, are given in the following example.

Example 11.14
Consider the M/G/1 queue discussed in Example 11.8. Suppose that a total of 10 independent replications
were made (R = 10). each replication beginning in the empty and idle state. The total simulation run length
on each replication was T, + T, = 15.000 minutes. The response variable was queue length, L,(z.r). at time 1,
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Specified initial “Steady-state” initial
conditions, conditions,

1, 1

1 I J

T T 1

0 T, Ty + Tg

Initialization phase Data-collection phase
of length 7)) of length T

Figure 11.3 Initialization and data collection phases of a steady-state simulation run.

where the second argument, r. denotes the replication (» = 1...., 10). The raw output data were batched, as in
Example 11.8. Equation (11.1). in batching intervals of 1000 minutes. to produce the following batch means:

v 1 JUH000) d 3
0o E)Edju—wxx)ldi’(‘r’ rydt (11.23)

for replication # = 1...., 10 and for batch j = 1, 2,..., 15. The estimator in Equation (11.23) is simply the time-
weighted-average queue length over the time interval [(j — 111000, j(1000)), similar to that in Equation (6.4).
The 13 batch means for the 10 replications are given in Table 11.5.

Normally we average all the batch means within each replication to obtain a replication average.
However, our goal at this stage is to identify the trend in the data due to initialization bias and find out when
it dissipates. To do this, we will average corresponding batch means across replications and plot them (this
idea is usually attributed to Welch [1983]). Such averages are known as ensemble averages. Specifically, for
each batch j, define the ensemble average across all R replications to be

Y =
J

x| —

R
Sy (11.24)
r=1

(R =10 here). The ensemble averages )_’./.j =1, .... 15 are displayed in the third column of Table 11.6. Notice
that Y., =4.03 and 7.3 = 5.45 are estimates of mean queue length over the time periods [0, 1000) and [ 1000,

2000), respectively, and they are less than all other ensemble averages ?./(j:l..., 15). The simulation
analyst may suspect that this is due to the downward bias in these estimators, which in turn is due to the
queue being empty and idle at time 0. This downward bias is further illustrated in the plots that follow.

Figure 11.4 is a plot of the ensemble averages. }7,/, versus 1000j, forj=1,2...., 15. The actual values, )7.’,‘
are the discrete set of points in circles, which have been connected by straight lines as a visual aid.
Figure 11.4 illustrates the downward bias of the initial observations. As time becomes larger, the effect of the
initial conditions on later observations lessens and the observations appear to vary around a common mean.
When the simulation analyst feels that this point has been reached, then the data-collection phase begins.

Table 11.6 also gives the cumulative average sample mean after deleting zero, one, and two batch means
from the beginning—that is, using the ensemble average batch means }7./. when deleting d observations out
of a total of n observations, compute

_ 1 & -
Y.(n.d)= Y (11.25)
n—d ‘;1

The results in Table 11.6 for the M/G/1 simulation are for d =0, 1, and 2, and n=d + 1,..., 15. These cumulative
averages with deletion, namely Y..(n, d), are plotted for comparison purposes in Figure 11.5. We do not
recommend using cumulative averages to determine the initialization phase, for reasons given next.
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Table 11.6 Summary of Data for M/G/1 Simulation: Ensemble Batch Means and Cumulative Means,
Averaged Over 10 Replications

Cumulative Cumulative Cumulative
Run Average Average Average Average
Length Batch Batch Mean, (No Deletion), (Delete 1), {Delete 2),
T j Y., Y. (7,0 Y.(j Y. (j,2)
1,000 I 4.03 4.03 — —
2.000 2 5.45 4.74 5.45 -
3.000 3 3.00 5.83 6.72 8.00
4.000 4 6.37 5.96 6.61 7.18
5.000 5 6.33 6.04 6.54 6.90
6.000 6 8.15 6.39 6.86 7.21
7.000 7 8.33 6.67 7.11 7.44
8.000 8 7.50 6.77 7.16 7.45
9.000 9 9.70 7.10 7.48 7.77
10,000 10 11.25 7.51 7.90 8.20
11.000 11 10.76 7.81 8.18 8.49
12,000 12 9.37 7.94 8.29 8.58
13,000 13 7.28 7.89 8.21 8.46
14,000 14 7.76 7.88 8.17 8.40
15.000 IS 8.76 7.94 8.21 8.43
¥,
11
10
() -
x -
Z 7
<
2 61
2
S
2
L
3 -
I
‘ —
L i | ! 1 i ] | [ | | | | ! |
1000 3000 5000 7000 9000 11,000 13,000 15.000 ¢

Figure 11.4 Ensemble averages )—/,/ for M/G/1 queue.
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Figure 11.5 Cumulative average queue length Y ..(n, d) versus time 1000n.

From Figures 11.4 and 11.5, it is apparent that downward bias is present, and this initialization bias in
the point estimator can be reduced by deletion of one or more observations. For the 15 ensemble average
batch means, it appears that the first two observations have considerably more bias than any of the remaining ones.
The effect of deleting first one and then two batch means is also illustrated in Table 11.6 and Figure 11.5.
As expected, the estimators increase in value as more data are deleted: that is, Y..(15,2)=8.43 and
Y..(15,1) = 8.21 are larger than Y ..(15, 0) = 7.94 . It also appears from Figure 11.5 that ¥..(n.d) is increasing
forn=5,6,..., 11 (and all d = 0, 1, 2), and thus there may still be some initialization bias. It seems, however,
that deletion of the first two batches removes most of the bias.

Unfortunately, there is no widely accepted, objective, and proven technique to guide how much data to
delete to reduce initialization bias to a negligible level. Plots can. at times, be misleading, but they are still
recommended. Several points should be kept in mind:

1. Ensemble averages, such as Figure 11.4, will reveal a smoother and more precise trend as the number
of replications, R, is increased. Since each ensemble average is the sample mean of i.i.d. observa-
tions, a confidence interval based on the 1 distribution can be placed around each point, as shown in
Figure 11.6, and these intervals can be used to judge whether or not the plot is precise enough to
Jjudge that bias has diminished. This is the preferred method to determine a deletion point.

2. Ensemble averages can be smoothed further by plotting a moving average. rather than the original
ensemble averages. In a moving average, each plotted point is actually the average of several adjacent
ensemble averages. Specifically. the jth plot point would be

N | AL

Y. =

J

2m+1 K

i=j-—n
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Figure 11.6 Ensemble averages Y. for M/G/1 queue with 95% confidence intervals.
g ges Y. q

for some m 2 1, rather than the original ensemble average }7.J . The value of m is typically chosen by
trial and error until a smooth plot is obtained. See Law and Kelton [2000] or Welch [1983] for further
discussion of smoothing.

3. Cumulative averages, such as in Figure 11.5, become less variable as more data are averaged.
Therefore, it is expected that the left side of the curve will always be less smooth than the right side.
More importantly, cumulative averages tend to converge more slowly to long-run performance than
do ensemble averages, because cumulative averages contain all observations, including the most
biased ones from the beginning of the run. For this reason, cumulative averages should be used only
if it is not feasible to compute ensemble averages, such as when only a single replication is possible.

4, Simulation data, especially from queueing models, usually exhibit positive autocorrelation. The more
correlation present, the longer it takes for }77 to approach steady state. The positive correlation
between successive observations (i.e., batch means) Y.,,Y.,, ... can be seen in Figure 11.4.

5. In most simulation studies, the analyst is interested in several different output performance measures
at once, such as the number in queue, customer waiting time, and utilization of the servers. Unfor-
tunately, different performance measures could approach steady state at different rates. Thus, it is
important to examine each performance measure individually for initialization bias and use a deletion
point that is adequate for all of them.

There has been no shortage of solutions to the initialization-bias problem. Unfortunately, for every
“solution” that works well in some situations, there are other situations in which either it is not applicable or
it performs poorly. Important ideas include testing for bias (e.g.. Kelton and Law [1983], Schruben [1980].
Goldsman. Schruben, and Swain [ 1994]): modeling the bias (e.g., Snell and Schruben [1985]): and randomly
sampling the initial conditions on multiple replications (e.g., Kelton [1989]).
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11.5.2 Error Estimation for Steady-State Simulation

If [Y . } are not statlstlcally independent, then S*/n, given by Equation (11.11), is a biased estimator of
the true varlance V(#). This is almost always the case when {Y|. ... ¥ } is a sequence of output observa-
tions from within a single replication. In this situation, Y,. Y., ... 1s an autocorrelated sequence. sometimes
called a time series. Example 11.8 (the M/G/1 queue) provides an illustration of this situation.

Suppose that our point estimator for 8 is the sample mean ¥ = 2 Y/n. A general result from mathe-
matical statistics is that the variance of ¥ s’

V(?)_ ZZCOV(Y Y) (11.26)

=l j=1

where cov(Y,, Y)= V(Y) To construct a confidence interval for 6, an estimate of V(Y) is required. But obtain-
ing an estimate of(] 1.26) is pretty much hopeless, because each term cov( (Y,. Y) could be different. in general.
Fortunately, systems that have a steady state will, if simulated long enough to pass the transient phase (such
as the production-line startup in Example 11.4), produce an output process that is approximately covariance
stationary. Intuitively, stationarity implies that ¥, depends on Y., in the same manner as ¥, depends on Y.
In particular, the covariance between two random \drldbltb n Iht tlme series depends only on the number ot
observations between them, called the lag.
For a covariance-stationary time series, {¥,. Y,. ...}. define the Jag-k autocovariance by

vo=cov(Y. Y, )=cov(¥Y.Y ) (11.27)

which, by definition of covariance stationarity, is not a function of i. For & = 0. %, becomes the population
variance ¢ *—that is,

Yo =cov(Y. Y ) =V(¥)=0" (11.28)
The lag-k autocorrelation is the correlation between any two observations k apart. It is defined by
p, =& (11.29)

and has the property that
—l<p <1, k=1.2....

If a time series is covariance stationary, then Equation (11.26) can be simplified substantially. Tedious algebra
shows that

_ 61 n—| 1\
V(Y):~—l:l+2z(l——)pk] (11.30)
n el n

where p, is the lag-k autocorrelation given by Equation (11.29).

When p.>0 for all k (or most k), the time series is said to be positively autocorrelated. In this case, large
observations tend to be followed by large observations, small observations by small ones. Such a series will tend
to drift slowly above and then below its mean. Figure 11.7(a) is an example of a stationary time series exhibit-
ing positive autocorrelation. The output data from most queueing simulations are positively autocorrelated.

On the other hand, if some of the p, <0, the series Y, Y,. ... will display the characteristics of negative
autocorrelation. In this case, large observations tend to be followed by small observations. and vice versa.
Figure 11.7(b) is an example of a stationary time series exhibiting negative autocorrelation. The output of
certain inventory simulations might be negativelv autocorrelated.

"This general result can be derived from the fact that, for two random variables Yrand Y VY, 2 ¥ 3= V(¥ + VY, 2covt Y Y,
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(a)
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Figure 11.7 () Stationary time series Y. exhibitng positive autocorrelation; {b) stationarytime series Y,
exhibiting negative autocorrelation; (c) nonstationary time series with an upward trend.

Figure 11.7(c) also shows an example of a time series with an upward trend. Such a time series is not
stationary: the probability distribution of ¥, is changing with the index i.

Why does autocorrelation make it difticult to estimate V(Y)? Recall that the standard estimator for the
variance of a sample mean is S%/n. By using Equation (11.30). it can be shown [Law. 1977] that the expected
value of the variance estimator S+/n is

E(‘[):Bwﬂ (11.31)
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where

B nle—1

(11.32)
n—1

and ¢ is the quantity in brackets in Equation (11.30). The effect of the autocorrelation on the oxestimator S%/n

is derived by an examination of Equations (11.30) and (11.32). There are essentially three possibilities:

Case 1
If the Y, are independent. then p, = 0 for k = 1. 2, 3, .... Therefore. (':l+22;::(l—k/n)pk =1 and

Equation (11.30) reduces to the familiar o%/n. Notice also that B = 1, so S¥n is an unbiased estimator of V(7).
The Y, will always be independent when they are obtained from different replications; that independence is
the primary reason that we prefer experiment designs calling for multiple replications.

Case 2

If the autocorrelations p, are primarily positive. then ¢ =1+ Z‘Z:(l —k/n)p, > 1, so that n/c < n, and hence

B < 1. Therefore, S%/n is biased low as an estimator of V(Y ). If this correlation were ignored, the nominal
100(1 = )% confidence interval given by Expression (11.12) would be too short, and its true confidence
coefficient would be less than 1 — o The practical effect would be that the simulation analyst would have unjus-
tified confidence (in the apparent precision of the point estimator) due to the shortness of the confidence
interval. If the correlations p, are large. B could be quite small, implying a significant underestimation.

Case 3

It the autocorrelations p, are substantially negative, then 0 < ¢ < I, and it follows that B > | and $%/n is biased
high for V(Y). In other words, the true precision of the point estimator ¥ would be greater than what is indi-
cated by its variance estimator S*/n, because

PERY

V(?)<E(§i

n

/

As aresult, the nominal 100(1 — «)% confidence interval of Expression (11.12) would have true confidence
coefficient greater than 1 — . This error is less serious than Case 2, because we are unlikely to make incor-
rect decisions if our estimate is actually more precise than we think it is.

A simple example demonstrates why we are especially concerned about positive correlation: Suppose
you want to know how students on a university campus will vote in an upcoming election. To estimate their
preferences, you plan to solicit 100 responses. The standard experiment is to randomly select 100 students
to poll; call this experiment A. An alternative is to randomly select 20 students and ask each of them to state
their preference 5 times in the same day: call this experiment B. Both experiments obtain 100 responses. but
clearly an estimate based on experiment B will be less precise (will have larger variance) than an estimate
based on experiment A. Experiment A obtains 100 independent responses. whereas experiment B obtains
only 20 independent responses and 80 dependent ones. The five opinions from any one student are perfectly
positively correlated (assuming a student names the same candidate all five times). Although this is an
extreme example, it illustrates that estimates based on positively correlated data are more variable than esti-
mates based on independent data. Therefore, a confidence interval or other measure of error should account
correctly for dependent data, but $*/» does not.

Two methods for eliminating or reducing the deleterious effects of autocorrelation upon estimation of a
mean are given in the following sections. Unfortunately, some simulation languages either use or facilitate
the use of $%/n as an estimator of V(Y), the variance of the sample mean. in all situations. If used uncritically
in a simulation with positively autocorrelated output data. the downward bias in $¥%n and the resulting
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shortness of a confidence interval for 8 will convey the impression of much greater precision than actually
exists. When such positive autocorrelation is present in the output data. the true variance of the point
estimator. Y. can be many times greater than is indicated by S*/n.

11.5.3 Replication Method for Steady-State Simulations

If initialization bias in the point estimator has been reduced to a negligible level (through some combination
of intelligent initialization and deletion). then the method of independent replications can be used to estimate
point-estimator variability and to construct a confidence interval. The basic idea is simple: Make R replica-
tions. initializing and deleting from each one the same way.

If, however. significant bias remains in the point estimator and a large number of replications are used
to reduce point-estimator variability. the resulting confidence interval can be misleading. This happens
because bias is not affected by the number of replications (R): it is affected only by deleting more data
(i.e.. increasing T,) or extending the length of each run (i.e.. increasing 7, ). Thus. increasing the number of
replications (R) wuld produce shorter confidence intervals around the * wmng point.” Therefore, it is important
to do a thorough job of investigating the initial-condition bias.

If the simulation analyst decides to delete d observations of the total of n observations in a replication.
then the point estimator of 6 is Y..(n.d). defined by Equation (11.25)—that is, the point estimator is the
average of the remaining data. The basic raw output data. {¥ . r= I.....R:j=1.... n}. are exhibited in
Table 11.7. Each Y is derived in one of the following ways:

Case 1

Y, isan individual observation from within replication s: for example. ¥ could be the delay of customer j
in a queue, or the response time to job j in a job shop.

Case 2

Y_is a batch mean from within replication r of some number of discrete-time observations. (Batch means
are discussed further in Section 11.5.5.)

Case 3
Y is a batch mean of a continuous-time process over time inierval /. for instance. as in Example 11.14, Equation
(11.23) defines Y, as the time-average (batch mean) number in queue over the interval [1000 (j — 1). 1000)).

In Case 1, the number d of deleted observations and the total number of observations n might vary from
one replication to the next. in which case replace d by  and n by n . For simplicity. assume that 4 and n are
constant over replications. In Cases 2 and 3.  and n will be constant.

Table 11.7 Raw Output Data from a Steady-State Simulation

B ; ‘ ;
; Gbservations Replication |
Replication 1 d d+ 1/ " Averages

1 Y Y, Y o+l Yo, Y., d)
2 Y, L bt Y., ?:-“L d
R )'_v._| YR,.; ),R..I C YR B );Mv, d)

Y, Y., y )—,” Y.n.d)
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When using the replication method. each replication is regarded as a single sample for the purpose of
estimating 6. For replication r. define

(11.33)

‘1u*\

as the sample mean of all (nondeleted) observations in replication r. Because all replications use different
random-number streams and all are initialized at time () by the same set of initial conditions (1), the repli-
cation averages

z.(rz. d). ....)7R,(n. d)

are independent and identically distributed random variables—that is. they constitute a random sample from
some underlying population having unknown mean

6., =EIY.(n.d)] (11.34)
The overall point estimator, given in Equation (11.25), is also given by

_ 1 & =
Y. .(n. (/):EZ Y.(n d) (11.35)
r=1

as can be seen from Table 11.7 or from using Equation (11.24). Thus. it follows that
ElY.(n.d)]=8,,

=6, and Y..(n, d) is an approximately unbiased

nd

also. If d and n are chosen sufficiently large. then 6
estimator of 6. The bias in Y..(n. d) is 6, d—6.

For convenience, when the value of n and d are understood, abbreviate Y, .(n.d) (the mean of the undeleted
observations from the rth replication) and Y.(n, d) (the mean of )—’l.(n, d), ... )7R.()1. d) by )_ and Y ...

respectively. To estimate the standard error of ¥ .. | first compute the sample variance,

\ I & - -

§'=——3 (¥ .- ZY ~RY: (11.36)
R— l r=1 -

The standard error of ¥.. is given by

se(Y.)=—= (11.37)
JR

A 100(T — % confidence interval for 6, based on the  distribution, is given by

Y. —t S <HLSY +

@l R-1 \/7( Tasn |7\/?

(11.38)



364 DISCRETE-EVENT SYSTEM SIMULATION

where 7, . , is the 100(1 — a/2) percentage point of a ¢ distribution with R — 1 degrees of freedom. This
confidence interval is valid only if the bias of Y .. 1s approximately zero.

As a rough rule, the length of each replication, beyond the deletion point, should be at least ten times
the amount of data deleted. In other words, (n — d) should at least 10d (or more generally, T,. should be at
least 107,). Given this run length, the number of replications should be as many as time permits, up to about
25 replications. Kelton [1986] established that there is little value in dividing the available time into more
than 25 replications, so, if time permits making more than 25 replications of length T, + 10T, then make 25

replications of longer than T, + 107,,, instead. Again, these are rough rules that need not be followed slavishly.

Example 11.15
Consider again the M/G/1 queueing simulation of Examples 11.8 and 11.14. Suppose that the simulation
analyst decides to make R = 10 replications, each of length T, = 15,000 minutes, each starting at time 0 in
the empty and idle state, and each initialized for 7, = 2000 minutes before data collection begins. The raw
output data consist of the batch means defined by Equation (11.23); recall that each batch mean is simply
the average number of customers in queue for a 1000-minute interval. The first two batch means are deleted
(d = 2). The purpose of the simulation is to estimate. by a 95% confidence interval, the long-run time-average
queue length, denoted by L,,.

The replication averages Y .(15,2).r =1,2,...,10. are shown in Table 11.8 in the rightmost column. The
point estimator is computed by Equation (11.35) as

Y..(15,2)=8.43

Its standard error is given by Equation (11.37) as

se(Y..(152)=1.59

Table 11.8 Data Summary for M/G/1 Simulation by Replication

Sample Mean for Replication r
Replication, (No Deletion) (Qelere 18} (Delete 2)
r Y .(15.0) Y.(15.1) Y (15.2)

I 3.7 3.24 3.25

2 16.25 17.20 17.83

3 15.19 15.72 15.43

4 7.24 7.28 7.71

5 2.93 2.98 301

6 4.56 4.82 491

7 8.44 8.96 9.45

8 5.06 5.32 527

9 6.33 6.14 6.24

10 10.10 10.48 11.07

Y.=(05.d) 7.94 8.21 8.43
R

PRE 826.20 894.68 938.34
r=l

5 2175 24.52 25.30

S 4.66 4.95 5.03

SIV10 =seY.) 147 1.57 1.59
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and using o =0.05 and ¢

00250 = 2-26, the 95% confidence interval for long-run mean queue length is given
by Inequality (11.38) as

8.43-2.26(1.59)< L, <8.43+2.26(1.59)

or
484<L,<12.02

The simulation analyst may conclude with a high degree of confidence that the long-run mean queue length
is between 4.84 and 12.02 customers. The confidence interval computed here as given by Inequality (11.38)
should be used with caution, because a key assumption behind its validity is that enough data have been
deleted to remove any significant bias due to initial conditions——that is, that d and n are sufficiently large
that the bias 6, ,— 6is negligible.

Example 11.16
Suppose that, in Example 11.15, the simulation analyst had decided to delete one batch (d = 1) or no batches
(d = 0). The quantities needed to compute 95% confidence intervals are shown in Table 11.8. The resulting
95% confidence intervals are computed by Inequality (11.38) as follows:

(d=1) 4.66=821-226(157)<L,<821+2.26(1.57)=11.76
(d=0) 4.62=794-226(147)<L,<7.94+2.26(1.47)=11.26

Notice that, for a fixed total sample size, n, two things happen as fewer data are deleted:

1. The confidence interval shifts downward, reflecting the greater downward bias in ?..(n, d) as d
decreases. B
2. The standard error of Y..(n, d), namely S/ \/E , decreases as d decreases.

In this example, Y ..(n, d) is based on a run length of T, = 1000(n — d) = 15,000 —1000d minutes. Thus, as
d decreases, T, increases, and, in effect, the sample mean Y.. is based on a larger “sample size” (i.e., longer
run length). In general, the larger the sample size, the smaller the standard error of the point estimator. This
larger sample size can be due to a longer run length (7) per replication, or to more replications (R).

Therefore, there is a trade-off between reducing bias and increasing the variance of a point estimator,
when the total sample size (R and T,+T,)is fixed. The more deletion (i.e., the larger T0 is and the smaller
T, is, keeping T, + T, fixed), the less bias but greater variance there is in the point estimator.

Recall that each batch in Examples 11.15 and 11.16 consists of 1000 minutes of simulated time.
Therefore, discarding d = 2 batches really means discarding 2000 minutes of data, a substantial amount.
It is not uncommon for very large deletions to be necessary to overcome the initial conditions.

11.5.4 Sample Size in Steady-State Simulations

Suppose it is desired to estimate a long-run performance measure, 8, within + €, with confidence 100(1 — a)%.
In a steady-state simulation, a specified precision may be achieved either by increasing the number of repli-
cations (R) or by increasing the run length (T.). The first solution, controlling R, is carried out as given in
Section 11.4.2 for terminating simulations.
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Example 11.17
Consider the data in Table 11.8 for the M/G/1 queueing simulation as an initial sample of size R, = 10. Assuming
that d = 2 observations were deleted, the initial estimate of variance is S; = 25.30. Suppose that it is desired to
estimate long-run mean queue length, L, within € = 2 customers with 90% confidence. The final sample size
needed must satisty Inequality (11.17). Using a = 0.10 in Inequality (11.18) yields an initial estimate:

R > ( :(MS
. €

=17.1

S, )2 1.645°(25.30)

Thus, at least 18 replications will be needed. Proceeding as in Example 11.11, nextry R=18, R=19, ... as
follows:

R 18 19

sk 174 173

[M) 19.15 18.93
€

R=192(1,,;,,S,/€)" =18.93 is the smallest integer R satisfying Inequality (11.17), so a total sample size of
R =19 replications is needed to estimate L,to within 2 customers. Therefore, R — R, =19 - 10 =9
additional replications are needed to achieve the specified error.

An alternative to increasing R is to increase total run length 7, + T, within each replication. If the
calculations in Section 11.4.2, as illustrated in Example 11.17, indicate that R - K additional replications
are needed beyond the initial number, R, then an alternative is to increase run length (7, + T,) in the same
proportion (R/R) to a new run length (R/IR T, + T,.). Thus, additional data will be deleted, from time 0 to
time (R/R)T,, and more data will be used to compute the point estimates, as illustrated by Figure 11.8.
However, the total amount of simulation effort is the same as if we had simply increased the number of repli-
cations but maintained the same run length. The advantage of increasing total run length per replication and
deleting a fixed proportion [T /(T + T,)] of the total run length is that any residual bias in the point estima-
tor should be further reduced by the additional deletion of data at the beginning of the run. A possible

Initialization Data collection
phase phase )
T J\ 1
0 I
Y Initialization Data collection
) phase ) phase )
T T 1
0 (RIR)T, (RIR)Ty + 1)

Figure 11.8 Increasing runlength to achieve specified accuracy.
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disadvantage of the method is that, in order to continue the simulation of all R replications [from time 7, + T,
to time (R/R ) (T, + T,)]. it is necessary to have saved the state of the model at time T,+ T, and to be able
to restart the model and run it for the additional required time. Otherwise, the simulations would have to
be rerun from time 0, which could be time consuming for a complex model. Some simulation languages have
the capability to save enough information that a replication can be continued from time T, onward, rather
than having to start over from time (.

Example 11.18
In Example 11.17, suppose that run length was to be increased to achieve the desired error, 2 customers.
Since R/R,=19/10 = 1.9, the run length should be almost doubled to ('R/RU)(T“ +7,) =1.9(15,000) =28,500
minutes. The data collected from time 0 to time (RIR )T, = 1.9(2000) = 3800 minutes would be deleted, and
the data from time 3800 to time 28.500 used to compute new point estimates and confidence intervals.

11.5.5 Batch Means for Interval Estimation in Steady-State Simulations

One disadvantage of the replication method is that data must be deleted on each replication and, in one sense,
deleted data are wasted data, or at least lost information. This suggests that there might be merit in using
an experiment design that is based on a single. long replication. The disadvantage of a single-replication
design arises when we try to compute the standard error of the sample mean. Since we only have data from
within one replication. the data are dependent, and the usual estimator is biased.

The method of batch means attempts to solve this problem by dividing the output data from one repli-
cation (after appropriate deletion) into a few large batches and then treating the means of these batches as if
they were independent. When the raw output data after deletion form a continuous-time process, {¥(1), T, <
1< T,+T,}, such as the length of a queue or the level of inventory. then we form k batches of size m = T, /k
and compute the batch means as

Y = ij' Y(+T,)dr
my il
tor /=1, 2, ... k. In other words. the jth batch mean is just the time-weighted average of the process over
the time interval [T + (j — Dm. T, + jm). exactly as in Example 11.8.
When the raw output data after deletion form a discrete-time process, Y. i=d+1.d+2,... n} such
as the customer delays in a queue or the cost per period of an inventory system, then we form & batches of
size m = (n — d)/k and compute the batch means as

| m

f, == y,/

m

=ty -Tim+l|

torj=1.2. ... k (assuming & divides n — d evenly. otherwise round down 1o the nearest integer). That is, the
batch means are formed as shown here:
Y. .. .Y.Y, Y. ¥ Y

1 VTNt T Tl 1 s Dy et s
—_—

R Y RUTE Y S V)

deieted ) 13 y

Starting with either continuous-time or discrete-time data, the variance of the sample mean is estimated by

= = s AL o2
NV SR YN e 34 (11.39)
— k-1 k(h—1)
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where Y is the overall sample mean of the data after deletion. As was discussed in Section 11.2, the batch
means ¥, ¥,, ..., ¥, are not independent; however, if the batch size is sufficiently large, successive batch means
will be approximately independent, and the variance estimator will be approximately unbiased.

Unfortunately, there is no widely accepted and relatively simple method for choosing an acceptable
batch size m (or equivalently choosing a number of batches k). But there are some general guidelines that
can be culled from the research literature:

Schmeiser [1982] found that for a fixed total sample size there is little benefit from dividing it into
more than k = 30 batches, even if we could do so and still retain independence between the batch
means. Therefore, there is no reason to consider numbers of batches much greater than 30, no matter
how much raw data are available. He also found that the performance of the confidence interval, in
terms of its width and the variability of its width. is poor for fewer than 10 batches. Therefore, a
number of batches between 10 and 30 should be used in most applications.

Although there is typically autocorrelation between batch means at all lags, the lag-1 autocorrelation
p = corr(?/ 17, .1) is usually studied to assess the dependence between batch means. When the lag-1
autocorrelation is nearly 0, then the batch means are treated as independent. This approach is based on
the observation that the autocorrelation in many stochastic processes decreases as the lag increases.
Therefore, all lag autocorrelations should be smaller (in absolute value) than the lag-1 autocorrelation.
The lag-1 autocorrelation between batch means can be estimated as described shortly. However,
the autocorrelation should not be estimated from a small number of batch means (such as the 10 <k <30
recommended above); there is bias in the autocorrelation estimator. Law and Carson [1979] suggest
estimating the lag-1 autocorrelation from a large number of batch means based on a smaller batch size
(perhaps 100 < k < 400). When the autocorrelation between these batch means is approximately 0, then
the autocorrelation will be even smaller if we rebatch the data to between 10 and 30 batch means based
on a larger batch size. Hypothesis tests for O autocorrelation are available, as described next.

If the total sample size is to be chosen sequentially, say to attain a specified precision, then it is helptul
to allow the batch size and number of batches to grow as the run length increases. It can be shown that
a good strategy is to allow the number of batches to increase as the square root of the sample size after
first finding a batch size at which the lag-1 autocorrelation is approximately 0. Although we will not
discuss this point further, an algorithm based on it can be found in Fishman and Yarberry [1997]; see
also Steiger and Wilson [2002].

Given these insights, we recommend the following general strategy:

1.

2.

Obtain output data from a single replication and delete as appropriate. Recall our guideline: collect-
ing at least 10 times as much data as is deleted.

Form up to k = 400 batches (but at least 100 batches) with the retained data, and compute the batch
means. Estimate the sample lag-1 autocorrelation of the batch means as

. Check the correlation to see whether it is sufficiently small.

(a) If p, £0.2a, then rebatch the data into 30 < k < 40 batches, and form a confidence interval using
k — 1 degrees of freedom for the 7 distribution and Equation (11.39) to estimate the variance of Y.

(b) If p, > 0.2, then extend the replication by 50% to 100% and go to Step 2. If it is not possible to
extend the replication. then rebatch the data into approximately k = 10 batches, and form the
confidence interval, using k—1 degrees of freedom for the ¢ distribution and Equation (11.39) to
estimate the variance of Y.
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4. As an additional check on the contidence interval. examine the batch means (at the larger or smaller
batch size) for independence. using the following test. (See. for instance. Alexopoulos and Seila
[1998].) Compute the test statistic

—_—

R 0 7S A SIS L che
=8 Ty g

! P — .
Vk-2 2 =)

I ¢ < 2, thenaceept the independence of the batch means, where s the Type I error level of the
test (such as 0.1..0.05.0.01). Otherwise. extend the replication by 50% to 100% and go to Step 2.
ITitis not possible to extend the replication, then rebatch the data into approximately & = 10 batches. and
form the confidence interval. using &-1 degrees of freedom for the 7 distribution and Equation (11.39) 10
estimate the variance of Y.

This procedure. including the final check. is conservative in several respects. First. if the lag-1 autocorrela-
tion is substantially negative then we proceed to form the confidence interval anyway. A dominant negative
correlation tends to make the confidence interval wider than necessary. which is an error. but not one that
will cause us to make incorrect decisions. The requirement that p <0.2 at 100 < k < 400 batches is pretty
stringent and will tend to force us to get more data (and therefore create larger batches) if there is any hint
of positive dependence. And finally. the hypothesis test at the end has a probability of fof forcing us to get
more data when none are really needed. But this conservatism is by design: the cost of an incorreet decision
15 typically much greater than the cost of some additional computer run time.
The batch-means approach to confidence-interval estimation is illustrated in the next example.

Example 11.19 ,_
Reconsider the M/G/1 simulation of Example 1.8, except that the mean service time is changed from 9.5
minutes o 7 minutes (implying a long-run server utilization of 0.7). Suppose that we want to estimate the steady-
state expected delay inqueue., A by a 95% confidence interval. To illustrate the method of batch means. assume
thatone run of the model has been made. simulating 3000 customers afier the deletion point. We then form batch
means from & = 100 batches of size i = 30 and estimate the lag-1 autocorrelation to be P, = 0.346 > 0.2 Thus.
we decide o extend the simulation to 6000 customers after the deletion point. and again we estimate the lag-1
autocorrelation. This estimate. based on & = 100 batches of sive m = 60, is P, =0.004 <0.2.

Having passed the correlation check. we rebateh the daza into & = 30 batches of size m = 200. The point
estimate is the overall mean

] HH

Y= Y =9.04

6000 <

minutes. The variance of ¥, computed from the 30 batch means. is

¢ U Y308
I ;ﬁ]‘ﬁ—_ =0.604
k 30(29)

Thus. a 95% contidence interval is given by

NOO04 <, <F e V0603

[ = o~

Vot

745=9.04-2.040.777) < w, £9.04+2.040.777) = 10.63
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Thus. we assert with 95% confidence that true mean delay in queue. w . is between 7.45 and 10.63 minutes.
It these results are not sufficiently precise for practical use, the run lulgth should be increased to achieve
greater precision.

As a further check on the validity of the confidence mterval. we can apply the correlation hypothesis
test. To do so. we compute the test statistic from the & = 30 batches of size nr = 200 used 10 form the conti-
dence interval. This gives

C=-031<196=2 .
confirming the lack of correlation at the 0.05 sigrificance level. Notice that. at this small number ot batches.
the estimated lag-1 autocorrelation appears to be slightly negative. illustrating our point about the difficulty
of estimating correlation with small numbers of observations.

11.5.6 Quantiles

Constructing confidence intervals for quantile estimates in a steady -state simulation can be tricky. especially
if the output process of interest is a continuous-time process. such s L (7). the number ol customers in queue
at time £. In this section. we outline the main issues.

Taking the casier case first. suppose that the output process from a single rephcation (after appropriate
deletion of initial data) is ¥, . .... ¥ To be concrete. ¥, might be the delay in queue of the ith customer.
Then the point estimate of the plh quannlc can ke obtained as betore. either from the histogram of the data
or from the sorted values. Of course. only the data after the deletion pointare used. Suppose we make R repli-
cations and let (7’ be the quantile estimate from the rth. Then the R quantile estimates. 9 R (9A are inde-
pendent and identically distributed. Their average is

T

vhere $7 is the usual sample variance of 6,.....0,.

What it only a single replication is obtained? Then the same reasoning applies it we let (-) be the quan-
tile estimate from within the ith batch of data. This requires sorting the data. or forming a histogram. within
cach batch. It the batches are large enough. then these within-batch gquantile estimates will also be approxi-
mately ti.d.

When we have a continuous-time output process. then. in principle. the same methods apply. However.
we must be careful not to transform the data in a way that changes the problem. In particular. we cannot first
form batch means—as we have done throughout this chapter—und then estimate the guantile from these
batch means. The p quantile of the batcl means of L (1) is not the same as the p quantile of L (1) itself. Thus.

the quantile point estimate must be tmnkd from the histogram ot the raw data—either hum cadl run, if we

make replications. or within each batch. if we make a single replication.

11.6 SUMMARY

This chapter emphasized the idea that a stochastic discrete-event simulation is a staustical experiment.
Therefore. before sound conclusions can be drawn on the basis of the simulation-generated output data.
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e proper statistical analysis is required. The purpose of the simulation experiment is to obtain estimates of
the performance measures of the system under study. The purpose of the statistical analysis is o acquire
some assurance that these estimates are sufficiently precise for the proposed use of the model.

A distinction was made between terminating simulations and steady-state simulations. Steady-state
simufation output data are more difficult to analyze. because the simulation analyst must address the problem
et itial conditions and the choice of run length. Some suggestions were given regarding these problems.
but unfortunately no simple. complete. and satisfactory solution exists. Nevertheless. simulation analysts
should be aware of the potential problems. and of the possible solutions—namely. deletion of data and
increasing of the run length. More advanced statistical teckniques (not discussed in this text) are given in
Aldexopoulos and Seila [ 1998, Bratley, Fox. and Schrage {1996], and Law and Kelton [2000].

The statistical precision of point estimators can be measured by a standard-error estimate or by a confi-
dence interval. The method of independent replications was emphasized. With this method, the simulation
analyst generates statistically independent observations. and thus standard statistical methods can be
cmployed. For steady-state simulations. the method of batch means was also discussed.

‘The main point is that simulation output data contain some amount of random variability; without some
assessment ol its size. the point estimates cannot be used with any degree of reliability.
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EXERCISES

1.

!0

n

Supposc that. in Example T1.14. the simulation analyst decided to investigate the bias by using batch
means over a batching interval of 2000 minutes. By definition. a batch mean for the interval [(j ~1) 2000,

j12000)) is defined by

| 20005
! = — /
g 20«)0{, AL

(a) Show algebraically that such a batch mean can be obtained from two adjacent batch means over the
two halves of the interval.

(h) Compute the seven averaged hatch means for the intervals 0. 20001, 12000, 4000). ... for the M/G/
simulation. Use the data (Y. ) in Table 11.6 (ignoring Y. =8.76).

(¢) Draw plots of the type used in Figures 11.4and 11.5. Does it still appear that deletion of the data
over [0, 2000) (the first “new™ batch mean) is sufficient to remove most of the point-estimator
bias?

Suppose. in Example 1114, that the simulation analyst could only aftford to run 5 independent replica:
tions (instead of 10). Use the batch means in Table 11.5 for replications 1 to 5 to compute a 95
confidence interval for mean queue fength L. Investigate deletion of initial data. Compare the results
from using S replications with those from using 10 replications.

In Example 11.7. suppose that management desired 95% confidence in the estimate of mean system
time 1 and that the error allowed was € = 0.4 minute. Using the same initial sample of size R, = 4 (given
in Table 11.1). figure out the required total sample size.

Simulate the dump-truck problem in Example 3.4 At first. make the run length 7, = 40 hours. Make
four independent replications. Compute a 90% confidence interval for mean cycle time, where a cycle
time for a given truck is the time between its successive arrivals to the loader. Investigate the effect of
different initial conditions (all trucks initially at the loader queue, versus all at the scale. versus all tray -
cling. versus the trucks distributed throughout the system in some manner).

Consider an (M. L) inventory system. in which the procurement quantity. Q. is defined by

mM-1 i<l
o =L

where 7 is the level of inventory on hand plus on order at the end of a month. M is the maximum inven-
tory level. and L is the reorder point. M and L are under management control. so the pair (M. L) is called
the inventory policy. Under certain conditions. the analytical solution of such a model is possible, but
the computational effort can be prohibitive. Use simulation 1o investigate an (M. L) inventory system
with the following properties: The inventory status is checked at the end of cach month. Backordering
is allowed at a cost of $4 per item short per month. When an order arrives. it will first be used to relieve
the backorder. The lead time is given by a uniform distribution on the interval (0.25. 1.25) months. Let
the beginning inventory level stand at 50 units. with no orders outstanding. Let the holding cost be S1
per unit in inventory per month. Assume that the inventory position is reviewed cach month. If an order
is placed. its cost is $60 + $3Q. where $60 is the ordering cost and $5 is the cost of cach item. The time
between demands is exponentially distributed with a mean of 1/15 month. The sizes of the demands fol-
low this distribution:



OUTPUT ANALYSIS FOR A SINGLE MODEL

373

6.

‘ Demand Probabiliry
| 1/2
2 1/4
3 1/8
4 1/8

(a) Make four independent replications, cach of run length 100 months preceded by a 12-month
initialization period. for the (M. L) = (50. 30) policy. Estimate long-run mean monthly cost with a
90% confidence interval.

(b) Using the results of part (a). estimate the total number of replications needed to estimate mean
monthly cost within $5.

Reconsider Exercise 6. except that, if the inventory level at a monthly review is zero or negative, a rush

order for Q units is placed. The cost for a rush order is $120+$120. where $120 is the ordering cost and

$12 is the cost of each item. The lead time tor a rush order is given by a uniform distribution on the

interval (0.10. 0.25) months.

(a) Make four independent replications for the (M. L) policy, and estimate long-run mean monthly cost
with a 90% confidence interval.

{b) Using the results of part (a). estimate the total number of replications needed to estimate mean
monthly cost within $5.

Suppose that the items in Exercise 6 are perishable. with a selling price given by the following data:

On the Shelf (Months) Selling Price

0-1 S10
|-2 5
>2 0

Thus. any item that has been on the shelf greater than 2 months cannot be sold. The age is measured at
the time the demand occurs. If an item is outdated. it is discarded. and the next item is brought forward.
Simulate the system for 100 months.

(a) Make four independent replications for the (M. L) = (50, 30) policy. and estimate long-run mean
monthly cost with a 90% confidence interval.

(b) Using the results of part (a). estimate the total number of replications needed to estimate mean
monthly cost within $5.

At first, assume that all the items in the beginning inventory are fresh. Is this a good assumption? What
effect does this “all-fresh™ assumption have on the estimates of tong- run mean monthly cost? What can
be done to improve these estimates” Carry out a complete analysis.

Consider the following inventory system:

(a) Whenever the inventory level fulls to or below 10 units, an order is placed. Only one order can be

outstanding at a time.

(b

The size of each order is Q. Mamtaining an inventory costs $0.50 per day per item in inventory.
Placing an order incurs a fixed cost. $10.00.

Lead time is distributed in accordance with a discrete uniform distribution between zero and 5 days.
It a demand occurs during a period when the inventory level is zero. the sale is lost at a cost of $2.00
per unit.

(¢)
(d)
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10.

(e) The number of customers each day is given by the following distribution:

Number of Customers per Day Probability

w2 19 —
—_
— 9 = 12

=
)

(f) The demand on the part of each customer is Poisson distributed with a mean of 3 units.
(g) For simplicity. assume that all demands occur at noon and that all orders are placed immediately
thereafter.

Assume turther that orders are received at 5:00 p.at. or after the demand that occurred on that day.
Consider the policy having () = 20. Make five independent replications, each of length 100 days. and
compute a 90% confidence interval for long-run mean daily cost. Investigate the effect of initial inven-
tory level and existence of an outstanding order on the estimate of mean daily cost. Begin with an initial
inventory ot Q + 10 and no outstanding orders.

A store selling Mother's Day cards must decide 6 months in advance on the number of cards 1o stock.
Reordering is not allowed. Cards cost $0.45 and sell for $1.25. Any cards not sold by Mother’s Day go
on sale for $0.50 for 2 weeks. However, sales of the remaining cards is probabilistic in nature accord-
ing to the following distribution:

32% of the time, all cards remaining get sold.
40% of the time, 80% of all cards remainirg are sold.
28% of the time. 60% of all cards remainirg are sold.

Any cards left after 2 weeks are sold for $0.25. The card-shop owner is not sure how many cards can be
sold, but thinks it is somewhere (i.c.. unitormly distributed) between 200 and 400. Suppose that the
card-shop owner decides to order 300 cards. Estimate the expected total profit with an error of at most
$5.00. (Hint: Make three or four initial replications. Use these data to estimate the total sample size
needed. Each replication consists ol one Mother’s Day.)

A very large mining operation has decided to control the inventory of high-pressure piping by
“periodic review. order up to M policy. where M is a target level. The annual demand for this piping 15
normally distributed. with mean 600 and variance 800. This demand occurs fairly uniformly over
the year. The lead time for resupply is Erlang distributed of order & = 2 with its mean at 2 months.
The cost of each unit is $400. The inventory carrying charge. as a proportion of item cost on an annual
basis. is expected to fluctuate normally about the mean 0.25 (simple interest). with a standard deviation
of 0.01. The cost of making a review and placing an order is $200. and the cost of a backorder is
estimated to be $100 per unit backordered. Suppose that the wnventory level is reviewed every 2 months.
and let M = 337.

(a) Make five independent replications. cach of run length 100 months. o estimate long-run mea

7

monthly cost by means of a 90% confidence interval.

(b) Investigate the effects of initial conditions. Calculate an appropriate number of monthly observa-
tions to delete to reduce initialization bias to a negligible level.
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11. Consider some number, say N, of M/M/1 queues in series. The M/M/1 queue. described in Section 6.4,

has Poisson arrivals at some rate A customers per hour. exponentially distributed service times with
mean 1/, and a single server. (Recall that “Poisson arrivals™ means that interarrival times are exponen-
tially distributed.) By M/M/1 queues in series, it is meant that. upon completion of service at a given
server. a customer joins a waiting line for the next server. The system can be shown as follows:

Server | Server 2 Server N
‘ i 1 | ‘l 1 o > U
/ P ;
L L

All service times are exponentially distributed with mean 1/u, and the capacity of cach waiting line is
assumed to be unlimited. Assume that A = § customers per hour and /g = 0.1 hour. The measure of
performance is responsc time. which is defined to be the total time a customer is in the system,

(a) By making appropriate simulation runs, compare the initialization bias for N = 1 (i.e., one M/M/|
queue) to N = 2 (le.. two M/M/| queues in series). Start each system with all servers idle and no
customers present. The purpose of the simulation is to estimate mean response time.

(b) Investigate the initialization bias as a function of N, for N =1,2, 3, 4, and 5.

(¢) Draw some general conclusions concerning initialization bias for “large™ queueing systems when at
time O the system is assumed to be empty and idle.

Jobs enter a job shop in random tashion according to a Poisson process at a stationary overall rate, two
every 8-hour day. The jobs are of four types. They tlow from work station to work station in a fixed
order, depending on type. as shown next. The proportions of ¢ach type are also shown.

Type Fiow through Stations Proportion
| {.2.3.4 0.4
2 1.3.4 0.3
3 2,43 0.2
4 1.4 0.1

Processing times per job at each station depend on type, but all times are (approximately) normally
distributed with mean and s.d. (in hours) as follows:

Station
Type / 2 3 4
| (20. 3) (30, 5) (75. 4 (20. 3)
2 (18.2) (60.5) (10. 1)
3 (120, 2) (50. 8) (10. 1)
4 (30.°5) (15.2)

Station { will have ¢, workers (/= 1.2, 3. 4). Each job occupics one worker at a station for the duration
of a processing time. All jobs are processed on a first-m—first-out basis, and all queues for waiting jobs
are assumed to have unlimited capacity. Simulate the system for 800 hours, preceded by a 200-hour
initialization period. Assume that ¢, =8, ¢, = 8. ¢, = 20, ¢, = 7. Based on R = 5 replications. compute a
97.5% confidence interval for average worker utilization at each of the four stations. Also. compute a
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95% contidence interval for mean total response time tor each job type. where a total response time is
the total time that a job spends in the shop.

13. Change Exercise 12 to give priority at each station to the jobs by tvpe. Type | jobs have priority over
type 2. type 2 over type 3. and type 3 over type . Use 800 hours as run length, 200 hours as initialization
period. and R = 5 replications. Compute four 97.5% confidence intervals for mean total response time
by type. Also. run the model without priorities and compute the same confidence intervals. Discuss the
trade-offs when using first in, first out versus a priority systeim.

14. Consider a single-server queue with Poisson arrivals at rate A= 10.82 per minute and normally distributed
service times with mean 5.1 seconds and variance 0.98 seconds. It is desired o estimate the mean time in
the system for a customer who, upon arrival. finds i other customers in the system—-that is. to estimate

wo=FEW|N =i fori=0.1.2....

where W is a typical system time and NV is the number of customers found by an arrival. For example.
1, is the mean system time for those customers who find the system empty. w,
for those customers who find one other customer present upon arrival. and so on. The estimate w ol w

is the mean system time

will be a sample mean of system times taken over all arrivals who find 7 in the system. Plot w vs /.
Hypothesize and attempt to verify a relation between w and 4.

(a) Simulate tor a 10-hour period with empty and idle initial conditions.

(b) Simulate for a 10-hour period after an initialization of one hour. Are there observable ditferences in
the results of (a) and (h)?

(¢) Repeat parts (a) and (b) with service times exponentially distributed with mean 5.1 scconds.

(d) Repeat parts (a) and (b) with deterministic service times equal to 5.1 scconds.

(e) Find the number of replications needed to estimate w,.w . ... v, with a standard error for cach ol
at most 3 scconds. Repeat parts (a)—(d). but using this number ot replications.

15. At Smalltown U., there is one specialized graphics workstation for student use located across campus
from the computer center. At 2:00 .M. one day. six students arrive at the workstation to complete an
assignment. A student uses the workstation tor 10 £ 8 minutes. then leaves to go to the computer center
to pick up graphics output. There is a 25% chance that the run will be OK and the student will go 1o
sleep. If it is not OK. the student returns to the workstation and waits until it becomes free. The roundtrip
from workstation to computer center and back takes 30 + 5 minutes. The computer becomes inaccessible
at 5:00 a.m. Estimate the probability. p. that &t least five of the six students will finish their assignment in
the 3-hour period. First, make R = 10 replications. and compute a 93% confidence interval for p. Next
work out the number of replications needed to estimate p within £.02. and make this number of repli
cations. Recompute the 95% confidence interval for p.

16. Four workers are spaced evenly along a conveyor belt. Items needing processing arrive according 1o
Poisson process at the rate 2 per minute. Processing time is exponentially distributed. with mean 1.6
minutes. If a worker becomes idle, then he or she takes the first item to come by on the conveyor. If o
worker is busy when an item comes by. that item moves down the conveyor to the next worker, taking
20 seconds between two successive workers. When a worker finishes processing an item. the item leaves
the system. If an item passes by the last worker. it is recirculated on a loop conveyor and will return (o
the first worker after 5 minutes.

Management is interested in having a balunced workload—that is. management would like worker
utilizations to be equal. Let p. be the long-run utilization of worker i. and let p be the average utiliza
tion of all workers. Thus. p=(p, + p, + p, + p,)/4. According to queueing theory. p can be estimated
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17.

18.

19.

by p = Alcy, where A =2 arrivals per minute, ¢ = 4 servers, and 1/u = 1.6 minutes is the mean service
time. Thus, p = A/cp = (2/4)1.6 = 0.8; so, on the average, a worker will be busy 80% of the time.

(a) Make 5 independent replications, each of run length 40 hours preceded by a one hour initialization
period. Compute 95% confidence intervals for p, and p,. Draw conclusions concerning workload
balance.

(b) Based on the same S replications, test the hypothesis H,: p, =0.8 at a level of significance a = 0.05.
If a difference of .05 is important to detect, determine the probability that such a deviation is detected.
In addition, if it is desired to detect such a deviation with probability at least 0.9, figure out the sample
size needed to do so. (See any basic statistics textbook for guidance on hypothesis testing.)

(¢) Repeat (b) for H,:p,=08.

(d) From the results of (a)—(c), draw conclusions for management about the balancing of workloads.

At a small rock quarry, a single power shovel dumps a scoop full of rocks at the loading area approxi-
mately every 10 minutes, with the actual time between scoops modeled well as being exponentially
distributed, with mean 10 minutes. Three scoops of rocks make a pile; whenever one pile of rocks is
completed, the shovel starts a new pile.

The quarry has a single truck that can carry one pile (3 scoops) at a time. It takes approximately 27 minutes
for a pile of rocks to be loaded into the truck and for the truck to be driven to the processing plant,
unloaded, and return to the loading area. The actual time to do these things (altogether) is modeled well
as being normally distributed, with mean 27 minutes and standard deviation 12 minutes.

When the truck returns to the loading area, it will load and transport another pile if one is waiting to be
loaded; otherwise, it stays idle until another pile is ready. For safety reasons, no loading of the truck
occurs until a complete pile (all three scoops) is waiting.

The quarry operates in this manner for an 8-hour day. We are interested in estimating the utilization of
the trucks and the expected number of piles waiting to be transported if an additional truck is purchased.

Big Bruin, Inc. plans to open a small grocery store in Juneberry, NC. They expect to have two check-
out lanes, with one lane being reserved for customers paying with cash. The question they want to
answer is: how many grocery carts do they need?

During business hours (6 A.m.—8 P.M.), cash-paying customers are expected to arrive at 8 per hour. All
other customers are expected to arrive at 9 per hour. The time between arrivals of each type can be
modeled as exponentially distributed random variables.

The time spent shopping is modeled as normally distributed, with mean 40 minutes and standard
deviation 10 minutes. The time required to check out after shopping can be modeled as lognormally
distributed, with (a) mean 4 minutes and standard deviation 1 minute for cash-paying customers:
(b) mean 6 minutes and standard deviation 1 minute for all other customers.

We will assume that every customer uses a shopping cart and that a customer who finishes shopping
leaves the cart in the store so that it is available immediately for another customer. We will also assume
that any customer who cannot obtain a cart immediately leaves the store, disgusted.

The primary performance measures of interest to Big Bruin are the expected number of shopping carts
in use and the expected number of customers lost per day. Recommend a number of carts for the store.
remembering that carts are expensive, but so are lost customers.

Develop a simulation model of the total time in the system for an M/M/1 queue with service rate u=1
therefore, the traffic intensity is p = A/ = A, the arrival rate. Use the simulation, in conjunction with
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the technique of plotting ensemble averages, to study the effect of traffic intensity on initialization
bias when the queue starts empty. Specifically, see how the initialization phase T, changes for
p=05,0.7,08,0.9,0.95.

20. The average waiting data from 10 replication of a queuing system are

Replication  Average Waiting Time

1.77
2.50
1.87
3.22
3.00
2.11
3.12
3.49
2.39
3.49

OO 0~ W -

Determine 90% confidence interval for the average waiting time.

21. Consider Example 6. If it is required to estimate the average waiting time with an absolute error of 0.25
and confidence level of 90%, determine the number of replications required.

22. In a queuing simulation with 20 replications, 90% confidence interval for average queue length is found
to be in the range 1.72—2.41. Determine the probability that the average queue length is less than 2.75.

23. Collect papers dealing with simulation output analysis and study the tools used.



12

Comparison and Evaluation of
Alternative System Designs

Chapter 11 dealt with the precise estimation of a measure of performance for one system. This chapter
discusses a few of the many statistical methods that can be used to compare two or more system designs on
the basis of some performance measure. One of the most important uses of simulation is the comparison of
alternative system designs. Because the observations of the response variables contain random variation,
statistical analysis is needed to discover whether any observed differences are due to differences in design or
merely to the random fluctuation inherent in the models.

The comparison of two system designs is computationally easier than the simultaneous comparison of
multiple (more than two) system designs. Section 12.1 discusses the case of two system designs, using two
possible statistical techniques: independent sampling and correlated sampling. Correlated sampling is also
known as the common random numbers (CRN) technique; simply put, the same random numbers are used
to simulate both alternative system designs. If implemented correctly, CRN usually reduces the variance of
the estimated difference of the performance measures and thus can provide, for a given sample size, more
precise estimates of the mean difference than can independent sampling. Section 12.2 extends the statistical
techniques of Section 12.1 to the comparison of multiple (more than two) system designs, using the
Bonferroni approach to confidence-interval estimation, screening, and selecting the best. The Bonferroni
approach is limited to twenty or fewer system designs, but Section 12.3 describes how a large number of
complex system designs can sometimes be represented by a simpler metamodel. Finally, for comparison and
evaluation of a very large number of system designs that are related in a less structured way, Section 12.4
presents optimization via simulation.

379
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12.1 COMPARISON OF TWO SYSTEM DESIGNS

Suppose that a simulation analyst desires to compare two possible configurations of a system. In a queueing
system, perhaps two possible queue disciplines, or two possible sets of servers, are to be compared. In a
supply-chain inventory system, perhaps two possible ordering policies will be compared. A job shop could
have two possible scheduling rules; a production system could have in-process inventory buffers of various
capacities. Many other examples of alternative system designs can be provided.

The method of replications will be used to analyze the output data. The mean performance measure for
system i will be denoted by 6(i = 1,2). If it is a steady-state simulation, it will be assumed that deletion of data,
or other appropriate techniques, have been used to ensure that the point estimators are approximately unbiased
estimators of the mean performance measures, 6. The goal of the simulation experiments is to obtain point and
interval estimates of the difference in mean performance, namely 6, — 6,. Three methods of computing a
confidence interval for 6, — 6, will be discussed, but first an example and a general framework will be given.

Example 12.1
A vehicle-safety inspection station performs three jobs: (1) brake check, (2) headlight check, and (3) steer-
ing check. The present system has three stalls in parallel; that is, a vehicle enters a stall, where one attendant
makes all three inspections. The current system is illustrated in Figure 12.1(a). Using data from the existing
system, it has been assumed that arrivals occur completely at random (i.e., according to a Poisson process)
at an average rate of 9.5 per hour and that the times for a brake check, a headlight check, and a steering check
are normally distributed with means of 6.5, 6, and 5.5 minutes, respectively, all having standard deviations
of approximately 0.5 minute. There is no limit on the queue of waiting vehicles.

An alternative system design is shown in Figure 12.1(b). Each attendant will specialize in a single task.
and each vehicle will pass through three work stations in series. No space is allowed for vehicles between
the brake and headlight check, or between the headlight and steering check. Therefore, a vehicle in the brake
or headlight check must move to the next attendant, and a vehicle in the steering check must exit before the
next vehicle can move ahead. The increased specialization of the inspectors suggests that mean inspection
times for each type of check will decrease by 10%: to 5.85, 5.4, and 4.95 minutes, respectively, for the brake.
headlight. and steering inspections. The Safety Inspection Council has decided to compare the two systems
on the basis of mean response time per vehicle, where a response time is defined as the total time from a
vehicle arrival until its departure from the system.

Three attendants

Cars arrive
>
(a)
Cars arrive
> —
]
Brake Headlight Steering
inspection check check
(b)

Figure 12.1 Vehicle safety inspection station and a possible alfernative design.
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When comparmg two systems, such as those in Example 12.1, the simulation analyst must decide on a
run length T for each model (i = 1, 2), and a number of replications R, to be made of each model. From
replication r of system i, the simulation analyst obtains an estimate Y, ot the mean performance measure,
6. In Example 12.1, Y, would be the average response time observed durmg replication r for system i (r =1,

sR;i=1,2). The data together with the two summary measures, the sample means Y and the sample

variances S;, are exhibited in Table 12.1. Assuming that the estimators Y _ are (at least approximately)
unbiased, it follows that

6, =EY,),r=1,..,R;0,=EY,).r=1,

In Example 12.1, the Safety Inspection Council is interested in a comparison of the two system
designs, so the simulation analyst decides to compute a confidence interval for 6, — 6,, the difference
between the two mean performance measures. The confidence interval is used to answer two questions:
(1) How large is the mean difference, and how precise is the estimator of mean difference? (2) Is there a

significant difference between the two systems? This second question will lead to one of three possible
conclusions:

1. If the confidence interval (c.i.) for 8, — 6, is totally to the left of zero, as shown in Figure 12.2(a),
then there is strong evidence for the hypothesis that 6, — 6, <0, or equivalently 6, < 6,.

Table 12.1 Simulation Output Data and Summary Measures for
Comparing Two Systems

Replicati
epication Sample Sample
System 1 2 . R, Mean Variance
1 Y, Y, Y., 1 Y, S;
2 Y, Yy, Y22 )7; 5,
{ N Y !
A} 7\ T T
T 0
Y- Y,
(a)
; X ¥
0 T
Y- Y,
(b)
— * }
° 1
Y, - T,
(¢)

Figure 12.2 Three confidence infervals that can occur in the comparing of two systems.
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In Example 12.1, 6, < 6, implies that the mean response time for system 1 (the original system) is smaller
than for system 2 (the alternative system).
2. If the c.i. for 6, — 6, is totally to the right of zero, as shown in Figure 12.2(b), then there is strong
evidence that 8, — 6, > 0, or equivalently, 6, > 6,.

In Example 12.1, 8, > 6, can be interpreted as system 2 being better than system 1, in the sense that system
2 has smaller mean response time.

3. If the c.i. for 6, — 6, contains zero, then, in the data at hand, there is no strong statistical evidence
that one system design is better than the other.

Some statistics textbooks say that the weak conclusion 6, = 6, can be drawn, but such statements can be
misleading. A “weak” conclusion is often no conclusion at all. Most likely, if enough additional data were
collected (i.e., R, increased), the c.i. would shift, and definitely shrink in length, until conclusion | or 2 would
be drawn. In dddmon to one of these three conclusions, the confidence interval provides a measure of the
precision of the estimator of 8, — 6,.

In this chapter, a two- 51ded 100(1-@)% c.i. for 6, — 6, will always be of the form

?1 —;.z +t

and v is the degrees of freedom associated with the variance estimator, ¢,  is the 100(1 — «/2) percentage
point of a ¢ distribution with v degrees of freedom, and s.e.() represents the standard error of the specified
point estimator. To obtain the standard error and the degrees of freedom, the analyst uses one of three
statistical techniques. All three techniques assume that the basic data, Y of Table 12.1, are approximately
normally distributed. This assumption is reasonable provided that each Y is itself a sample mean of obser-
vations from replication r (which is indeed the situation in Example 12.1).

By design of the simulation exgeriment, Y (r=1, ..., R) are independently and identically distributed
(i.i.d.) with mean 6, and variance O, (say). Similarly, Y ,(r=1, ..., R,) are i.i.d. with mean 6, and variance
0’§ (say). The three techniques for computing the confidence interval in (12.1), which are based on three
different sets of assumptions, are discussed in the following subsections.

There is an important distinction between statistically significant differences and practically significant
differences in systems performance. Statistical significance answers the following question: Is the observed
difference Y Y, larger than the variability in ¥ —Y,? This question can be restated as: Have we collected
enough data to be confident that the difference we observed is real, or just chance? Conclusions I and 2
imply a statistically significant difference, while Conclusion 3 implies that the observed difference is not
statistically significant (even though the systems may indeed be different). Statistical significance is a function
of the simulation experiment and the output data.

Practical significance answers the following question: Is the true difference 8, — 6, large enough to matter
for the decision we need to make? In Example 12.1, we may reach the conclusion that 6, > 6, and decide
that system 2 is better (smaller expected response time). However, if the actual dlﬂerence 0, — 0, is very
small—say, small enough that a customer would not notice the improvement— then it mlght not be worth
the cost to replace system 1 with system 2. Practical significance is a function of the actual difference
between the systems and is independent of the simulation experiment.
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Confidence intervals do not answer the question of practical significance directly. Instead, they bound
(with probability 1 — ) the true difference 6, — 6, within the range

Y, —?2 ~l,, s.e.(;i—)_’z)/s 6,-6, < )_/.1 “;-z‘Ha:.v S.C.(?_I —?2)

Whether a difference within these bounds is practically significant depends on the particular problem.

12.1.1 Independent Sampling with Equal Variances

Independent sampling means that different and independent random number streams will be used to simulate

the two systems. This implies that all the observations of simulated system 1, namely {Y,,r=1,...,R }, are

statistically independent of all the observations of simulated system 2, namely {Y,, r = 1, } By

Equation (12.2) and the independence of the replications, the variance of the sample mean, Y, L, 18 glven by
V(y,) o’

V(Y )=—tl =Tl =12
(Y, - rs

For independent sampling, ¥, and Y, are statistically independent; hence,

V(Y, -Y,) =V )+ V(Y,)
o’ o (12.3)

In some cases, it is reasonable to assume that the two variances are equal (but unknown in value); that
is, 0] = = 0, The data can be used to test the hypothesis of equal variances; if rejected, the method of Section

12.1.2 must be used. In a steady-state simulation, the variance o; decreases as the run length T increases:

therefore, it mlght be possible to adjust the two run lengths, 7' and T, to achieve at least approximate
equality of o} and 0.

If it is reasonable to assume that O’f = O’f (approximately), a two-sample-z confidence-interval
approach can be used. The point estimate of the mean performance difference is

Y, -7, (12.4)

with )77 given by Equation (12.2). Next, compute the sample variance for system i by
I < =
§'=——N(, -v)
T Rl _ rz:] r

| (e .5
=R—1[ Y”‘—R,YfJ (12.5)

: r=i

Note that S is an unbiased estimator of the variance o;. By assumption, o} =0'= o’ (say), so a pooled
estimate of o2 is obtained by

¢ &R -DS] +(R, = 1)S;
o R +R,-2
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which has v =R, + R, — 2 degrees of freedom. The c.i. for 6, - 6, is then given by Expression (12.1) with
the standard error computed by

— o1
se(, =¥, =S, [+ (12.6)

1

This standard error is an estimate of the standard deviation of the point estimate, which, by Equation (12.3),
is given by oJI/R +1/R,.

In some cases, the simulation analyst could have R, = R,, in which case it is safe to use the c.i. in
Expression (12.1) with the standard error taken from Equatlon (1“ 6), even if the variances (0' and 03) are
not equal. However, if the variances are unequal and the sample sizes differ, it has been shown that use of
the two-sample-f c.i. could yield invalid confidence intervals whose true probability of containing 0,-6,is
much less than 1 — a. Thus, if there is no evidence that o] = o, , and if R, # R,, the approximate procedure
in the next subsection is recommended.

12.1.2 Independent Sampling with Unequal Variances

If the assumption of equal variances cannot safely be made, an approximate 100(1 — )% c.i. for 6, — 6, can
be computed as follows. The point estimate and sample variances are computed by Equations (12 4) and
(12.5). The standard error of the point estimate is given by

= —  [§ .S
seY, —-Y)= [+++ 12.7)
Y, =Y,) R R (12.7)
with degrees of freedom, v, approximated by the expression
(S /R +S:/R)) ;
= (12.8)

TUSTIRY IR~ D)} +(S/R,} KR, —D)]

rounded to an integer. The confidence interval is then given by Expression (12.1), using the standard error of
Equation (12.7). A minimum number of replications R, > 6 and R, > 6 is recommended for this procedure.

12.1.3 Common Random Numbers (CRN)

CRN means that, for each replication, the same random numbers are used to simulate both systems.
Therefore, R, and R, must be equal, say R, = R, = R. Thus, for each replication r, the two estimates, Y | and
Y .. are no longer mdependent but rather are correlated However, independent streams of random numbers
are used on different replications, so the pairs ( Y .Y,) are mutually independent when r # 5. (For example,
in Table 12.1, the observation Y, is correlated with ¥,,, but ¥, is independent of all other observations.) The
purpose of using CRN is to induce a positive correlation between Y and Y, (for each r) and thus to achieve

a variance reduction in the point estimator of mean difference, Y ,—V, . In general, this variance is given by

V(Y -Y,)=V()+V(¥,)-2cov(Y . Y,)

ol o, 2p,0,0,
= — - 12
R R R (12.9)
where p,, is the correlation between ¥, and Y. [By definition, f, = cov(Y,,, ¥,)/0,0, , which does not
depend on r.]
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Now compare the variance of Y_— ;’— arising from the use of CRN [Equation (12.9), call it V. v 1O the
variance arising from the use of independent sampling with equal sample sizes [Equation (12.3) with
R, =R,=R, call it V,.]. Notice that

2p,,0,0,
Vern :vnvu"_lel (12.10)

If CRN works as intended, the correlation p,, will be positive; hence, the second term on the right side of
Equation (12.9) will be positive, and, therefore,
v(,‘RN < VIND

That is, the variance of the point estimator will be smaller with CRN than with independent sampling.
A smaller variance (for the same sample size R) implies that the estimator based on CRN is more precise,
leading to a shorter confidence interval on the difference, which implies that smaller differences in performance
can be detected.

To compute a 100(1 — a)% c.i. with correlated data, first compute the differences

D =Y, -Y, (12.11)

which, by the definition of CRN, are i.i.d.; then compute the sample mean difference as
1 R
— 12.12
=R Z (12.12)
(Thus, D = 7, - )72.) The sample variance of the differences {D_} is computed as
ST
(ZD —RD? ] (12.13)

= ‘ k

which has degrees of freedom v =R — 1. The 100(1 — )% c.i. for 6, — 6, is given by Expression (12.1), with
the standard error of Y Y estimated by

= S
se(D)=se(Y ) =—*% (12.14)

JR

Because S,)/\/E of Equation (12.14) is an estimate of \/‘m and Expression (12.6) or (12.7) is an estimate

C
of m CRN typically will produce a c.i. that is shorter for a given sample size than the c.i. produced by
independent sampling if p,, > 0. In fact, the expected length of the c.i. will be shorter with use of CRN if
Py, > 0.1, provided R > 10. The larger R is, the smaller p,, can be and still yield a shorter expected length
[Nelson 1987].

For any problem, there are many ways of implementing common random numbers. It is never enough
to simply use the same seed on the random-number generator(s). Each random number used in one model
for some purpose should be used for the same purpose in the second model—that is, the use of the random
numbers must be synchronized. For example, if the ith random number is used to generate a service time at
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work station 2 for the Sth arrival in model 1, the ith random number should be used for the very same purpose
in model 2. For queueing systems or service facilities, synchronization of the common random numbers
guarantees that the two systems face identical work loads: both systems face arrivals at the same instants of
time, and these arrivals demand equal amounts of service. (The actual service times of a given arrival in the
two models may not be equal; they could be proportional if the server in one model were faster than the server
in the other model.) For an inventory system, in comparing of different ordering policies, synchronization
guarantees that the two systems face identical demand for a given product. For production or reliability
systems, synchronization guarantees that downtimes for a given machine will occur at exactly the same times
and will have identical durations, in the two models. On the other hand, if some aspect of one of the systems
is totally different from the other system, synchronization could be inappropriate—or even impossible to
achieve. In summary, those aspects of the two system designs that are sufficiently similar should be simulated
with common random numbers in such a way that the two models “behave” similarly; but those aspects that
are totally different should be simulated with independent random numbers.

Implementation of common random numbers is model dependent, but certain guidelines can be given
that will make CRN more likely to yield a positive correlation. The purpose of the guidelines is to ensure
that synchronization occurs:

1. Dedicate a random-number stream to a specific purpose, and use as many different streams as
needed. (Different random-number generators, or widely spaced seeds on the same generator, can be
used to get two different, nonoverlapping streams.) In addition, assign independently chosen seeds
to each stream at the beginning of each replication. It is not sufficient to assign seeds at the begin-
ning of the first replication and then let the random-number generator merely continue for the second
and subsequent replications. If simulation is conducted in this manner, the first replication will be
synchronized, but subsequent replications might not be.

2. For systems (or subsystems) with external arrivals: As each entity enters the system, the next inter-
arrival time is generated, and then immediately all random variables (such as service times, order
sizes, etc.) needed by the arriving entity and identical in both models are generated in a fixed order
and stored as attributes of the entity, to be used later as needed. Apply guideline 1: Dedicate one
random-number stream to these external arrivals and all their attributes.

3. For systems having an entity performing given activities in a cyclic or repeating fashion, assign a
random-number stream to this entity. (Example: a machine that cycles between two states: up—down—
up—down—.... Use a dedicated random-number stream to generate the uptimes and downtimes.)

4. If synchronization is not possible, or if it is inappropriate for some part of the two models, use inde-
pendent streams of random numbers for this subset of random variates.

Unfortunately, there is no guarantee that CRN will always induce a positive correlation between com-
parable runs of the two models. It is known that if, for each input random variate X, the estimators Y, and
Y, are increasing functions of the random variate X (or both are decreasing tunctions of X), then p,, will
be positive. The intuitive idea is that both models (i.e., both Y and Y ,) respond in the same direction to
each input random variate, and this results in positive correlation. This increasing or decreasing nature of
the response variables (called monotonicity) with respect to the input random variables is known to hold for
certain queueing systems (such as the GI/G/c queues), when the response variable is customer delay, so
some evidence exists that common random numbers is a worthwhile technique for queueing simulations.
(For simple queues, customer delay is an increasing function of service times and a decreasing function of
interarrival times.) Wright and Ramsay [1979] reported a negative correlation for certain inventory simula-
tions, however. In summary, the guidelines recently described should be followed, and some reasonable
notion that the response variable of interest is a monotonic function of the random input variables should
be evident.
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Example 12.1: Continued
The two inspection systems shown in Figure 12.1 will be compared by using both independent sampling and
CRN, in order to illustrate the greater precision of CRN when it works.

Each vehicle arriving to be inspected has four input random variables associated with it:

A, = interarrival time between vehicles n and n + 1
S." = brake inspection time for vehicle # in model 1|
S'* = headlight inspection time for vehicle n in model 1

S!" = steering inspection time for vehicle n in model 1

For model 2 (of the proposed system), mean service times are decreased by 10%. When using independent
sampling, different values of service (and interarrival) times would be generated for models 1 and 2 by using
different random numbers. But when using CRN, the random number generator should be used in such a way
that exactly the same values are generated for A, A,, A., ... in both models. For service times, however, we
do not want the same service times in both models, because the mean service time for model 2 is 10%
smaller, but we do want strongly correlated service times. There are at least two ways to do this:

1. Let $"(i=1,2,3;n=1,2,...) be the service times generated for model 1; then use S —0.1E(S!")
as the service times in model 2. In words, we take each service time from model 1 and subtract 10%
of its true mean.

2. Recall that normal random variates are usually produced by first generating a standard normal variate
and then using Equation (8.29) to obtain the correct mean and variance. Therefore, the service times
for, say, a brake inspection could be generated by

ES"y+02!" (12.15)

where Z!" is a standard normal variate, o = 0.5 minute, but E(S'") = 6.5 minutes for model 1 and
E(S!")=5.85 minutes (10% less) for model 2. The other two inspection times would be generated
in a similar fashion. To implement (synchronized) common random numbers, the simulation analyst
would generate identical Z\” sequences (i = 1,2, 3; n =1, 2, ...) in both models and then use the
appropriate version of Equation (12.15) to generate the inspection times.

For the synchronized runs, the service times for a vehicle were generated at the instant of arrival (by
guideline 2) and stored as an attribute of the vehicle, to be used as needed. Runs were also made with non-
synchronized common random numbers, in which case one random number stream was used as needed.

Table 12.2 gives the average response time for each of R = 10 replications, each of run length 7, = 16
hours. It was assumed that two cars were present at time 0, waiting to be inspected. Column 1 gives the
outputs from model 1. Model 2 was run with independent random numbers (column 2I) and with common
random numbers without synchronization (column 2C*) and with synchronization (column 2C). The purpose
of the simulation is to estimate mean difference in response times for the two systems.

For the two independent runs (1 and 2I), it was assumed that the variances were not necessarily equal,
so the method of Section 12.1.2 was applied. Sample variances and the standard error were computed by
Equations (12.5) and (12.7), yielding

S$2=118.9, §2 =2443

J— } . 443
se(Y -Y,,)= w+2—=6.03
- 10 10

and
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Table 12.2 Comparison of System Designs for the Vehicle-Safety Inspection System

Observed
Average Response Time for Model Differences
Replication 1 21 2C* 2C D e Dy,
1 29.59 51.62 56.47 29.55 —26.88 0.04
2 23.49 5191 33.34 24.26 -9.85 -0.77
3 25.68 45.27 35.82 26.03 -10.14 -0.35
4 41.09 30.85 34.29 42.64 6.80 -1.55
5 33.84 56.15 39.07 3245 -5.23 1.39
6 39.57 28.82 32.07 3791 7.50 1.66
7 37.04 41.30 51.64 36.48 —-14.60 0.56
8 40.20 73.06 41.41 41.24 -1.21 -1.04
9 61.82 23.00 48.29 60.59 13.53 1.23
10 44.00 28.44 22.44 41.49 21.56 2.51
Sample mean 37.63 43.04 -1.85 0.37
Sample variance 118.90 24433 208.94 1.74
Standard error 6.03 - 4.57 0.42

with degrees of freedom, v, equal to 17, as given by Equation (12.8). The point estimate is i’_| -Y, =-54
minutes, and a 95% c.i. [Expression (12.1)] is given by

-5.4+2.11(6.03)

or

~18.1<6,-6,<7.3 (12.16)

The 95% confidence interval in Inequality (12.16) contains zero, which indicates that there is no strong
evidence that the observed difference, —5.4 minutes, is due to anything other than random variation in the output
data. In other words, it is not statistically significant. Thus, if the simulation analyst had decided to use inde-
pendent sampling, no strong conclusion would be possible, because the estimate of 6, — 6, is quite imprecise.

For the two sets of correlated runs (1 and 2C*, and | and 2C), the observations are paired and analyzed
as given in Equations (12.11) through (12.14). The point estimate when not synchronizing the random
numbers is given by Equation (12.12) as

D =-1.9 minutes

the sample variance by S; (with v = 9 degrees of freedom), and the standard error by s.e.(D)=4.6. Thus, a
95% c.i. for the true mean difference in response times, as given by expression (12.1), is

-1.9%£2.26(4.6)

or

-12.3<6,-6,< 85 (12.17)
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Again, no strong conclusion is possible, because the confidence interval contains zero. Notice, however,
that the estimate of 8, — 6, is slightly more precise than that in Inequality (12.16), because the length of the
interval is smaller.

When complete synchronization of the random numbers was used, in run 2C, the point estimate of the
mean difference in response times was

D =0.4 minute

the sample variance was SZ‘) = 1.7 (with v=9 degrees of freedom), and the standard error was s.e.(D) =
A 95% c.i. for the true mean difference is given by

-0.50<6,-6, <1.30 (12.18)

The confidence interval in Inequality (12.18) again contains zero, but it is considerably shorter than the
previous two intervals. This greater precision in the estimation of 6, — 6, is due to the use of synchronized
common random numbers. The short length of the interval in Inequahty (12.18) suggests that the true
difference, 91 6,, is close to zero. In fact, the upper bound, 1.30, indicates that system 2 is at most 1.30
minutes faster, in expectation. If such a small difference is not practically significant, then there is no need
to look further into which system is truly better.

As is seen by comparing the confidence intervals in inequalities (12.16), (12.17), and (12.18), the
width of the confidence interval is reduced by 18% when using nonsynchronized common random numbers,
by 93% when using common random numbers with full synchronization. Comparing the estimated variance
of D when using synchronized common random numbers with the variance of Y —Y, when using
independent sampling shows a variance reduction of 99.5%, which means that, to achieve precision com-
parable to that achieved by CRN, a total of approximately R = 209 independent replications would have
to be made.

The next few examples show how common random numbers can be implemented in other contexts.

Example 12.2: The Dump-Truck Problem, Revisited
Consider Example 3.4 (the dump-truck problem), shown in Figure 3.7. Each of the trucks repeatedly goes
through three activities: loading, weighing, and traveling. Assume that there are eight trucks and that, at time 0,
all eight are at the loaders. Weighing time per truck on the single scale is uniformly distributed between 1
and 9 minutes, and travel time per truck is exponentially distributed, with mean 85 minutes. An unlimited
queue is allowed before the loader(s) and before the scale. All trucks can be traveling at the same time.
Management desires to compare one fast loader against the two slower loaders currently being used. Each
of the slow loaders can fill a truck in from 1 to 27 minutes, uniformly distributed. The new fast loader can
fill a truck in from 1 to 19 minutes, uniformly distributed. The basis for comparison is mean system response
time, where a response time is defined as the duration of time from a truck arrival at the loader queue to that
truck’s departure from the scale.

To implement synchronized common random numbers, a separate and distinct random number stream
was assigned to each of the eight trucks. At the beginning of each replication (i.e., at time 0), a new and inde-
pendently chosen set of eight seeds was specified, one seed for each random number stream. Thus, weighing
times and travel times for each truck were identical in both models, and the loading time for a given truck’s
ith visit to the fast loader was proportional to the loading time in the original system (with two slow loaders).
Implementation of common random numbers without synchronization (e.g., using one random number
stream to generate all loading, weighing, and travel times as needed) would likely lead to a given random
number being used to generate a loading time in model 1 but a travel time in model 2, or vice versa, and from
that point on the use of a random number would most likely be different in the two models.
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Table 12.3 Comparison of System Designs for the Dump Truck Problem

Average Response Time for Model
Replication ) 21 2C Differences,
2 Loaders) (I Loader) (1 Loader) D,
1 21.38 29.01 24.30 -2.92
2 24.06 24.70 27.13 -3.07
3 21.39 26.85 23.04 -1.65
4 21.90 24.49 23.15 -1.25
5 23.55 27.18 26.75 -3.20
6 22.36 2691 25.62 -3.26
Sample mean 22.44 26.52 -2.56
Sample variance 1.28 2.86 0.767
Sample standard 1.13 1.69 0.876
deviation

Six replications of each model were run, each of run length 7, = 40 hours. The results are shown in
Table 12.3. Both independent sampling and CRN were used, to illustrate the advantage of CRN. The first
column (labeled model 1) contains the observed average system response time for the existing system with
two loaders. The columns labeled 2I and 2C are for the alternative design having one loader; the independent
sampling results are in 21, and the CRN results are in the column labeled 2C. The rightmost column, labeled
D, lists the observed differences between the runs of model 1 and model 2C.

For independent sampling assuming unequal variances, the following summary statistics were computed
by using Equations (12.2), (12.5), (12.7), (12.8), and (12.1) and the data (in columns 1 and 2I) in Table 12.3:

Point Estimate: Y, —Y,, =22.44-26.52 = -4.08 minutes
Sample variances: S’ = 1.28, S;, =286

Standard Error: s.e.(f, —)7_2)= (SIZ /R, + Sz:, /Rz)”? =0.831
Degrees of freedom: v=8.73=9

95% c.i. for 6, — 6,; —4.08 £2.26(0.831) or -4.08 = 1.878

-596<6,-6,<-220
For CRN, implemented by the use of synchronized common random numbers, the following summary
statistics were computed by using Equations (12.12), (12.13), (12.14), and (12.1) plus the data (in columns
I and 2C) in Table 12.3:

Point Estimate: D =Y, —Y,.=-2.56 minutes

Sample variance:  S; =0.767

Standard Error:  s.e(D)=S, /R = 0.876//6 = 0.358

Degrees of freedom: v=R-1=35

95% c.i. for 6, — 6,: —2.56 £2.57(0.358) or —2.56 + 0.919
~348<6, - 0,<—1.641

By comparing the c.i. widths, we see that the use of CRN with synchronization reduced c.i. width
by 50%. This reduction could be important if a difference of as much as, say, 5.96 is considered practically
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significant, but a difference of at most 3.48 is not. Equivalently, if equal precision were desired. independent
sampling would require approximately four times as many observations as would CRN: approximately 24
replications of each model instead of six.

To illustrate how CRN can fail when not implemented correctly, consider the dump-truck model again.
There were eight trucks, and each was assigned its own random number stream. For each of the six replica-
tions, eight seeds were randomly chosen, one seed for each random number stream. Therefore, a total of 48
(6 times 8) seeds were specified for the correct implementation of common random numbers. When the
authors first developed and ran this example, eight seeds were specified at the beginning of the first replica-
tion only; on the remaining five replications the random numbers were generated by continuing down the
eight original streams. Since comparable replications with one and two loaders required different numbers
of random variables, only the first replications of the two models were synchronized. The remaining five
were not synchronized. The resulting confidence interval for 6, — 6, under CRN was approximately the same
length as, or only slightly shorter than, the confidence interval under independent sampling. Therefore, CRN
is quite likely to fail in reducing the standard error of the estimated difference unless proper care is taken to
guarantee synchronization of the random number streams on all replications.

Example 12.3
In Example 2.5, two policies for replacing bearings in a milling machine were compared. The bearing-life
distribution, assumed discrete in Example 2.5 (Table 2.22), is now more realistically assumed to be contin-
uous on the range from 950 to 1950 hours, with the first column of Table 2.22 giving the midpoint of 10
intervals of width 100 hours. The repairperson delay-time distribution of Table 2.23 is also assumed contin-
uous, in the range from 2.5 to 17.5 minutes, with interval midpoints as given in the first column. The prob-
abilities of each interval are given in the second columns of Tables 2.22 and 2.23.

The two models were run by using CRN and, for illustrative purposes, by using independent sampling, each
for R = 10 replications. The purpose was to estimate the difference in mean total costs per 10,000 bearing hours,
with the cost data given in Example 2.5. The estimated total cost for the two policies is given in Table 12.4.

Table 12.4 Total Costs for Alternative Designs of Bearing
Replacement Problem

Total Cost for Difference in
Policy Toral Cost
Replication r

2 11 ic D,.,

1 13,340 17,010 17,556 4,216

2 12,760 17,528 17.160 4,400

3 13.002 17.956 17.808 4,806

4 13,524 17,920 18,012 4,488

5 13,754 18,880 18,200 4,446

6 13,318 17,528 17,936 4,618

7 13,432 17,574 18,350 4918

8 14,208 17,954 19,398 5.190

9 13,224 18,290 17,612 4,388

10 13,178 17,360 17,956 4,778
Sample mean 13.374 17,800 4,624
Sample variance 160.712 276,188 87,353
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Policy 1 was to replace each bearing as it failed. Policy 2 was to replace all three bearings whenever one
bearing failed. Policy 2 was run first, and then policy 1 was run, using independent sampling (column 1),
and using CRN (column 1C). The 95% confidence intervals for mean cost difference are as follows:

Independent sampling: $4426 + 439
CRN: $4625 £ 211

(The computation of these confidence intervals is left as an exercise for the reader.)

Notice that the confidence interval for mean cost difference when using CRN is approximately 50% of
the length of the confidence interval based on independent sampling. Therefore. for the same computer costs,
(i.e., for R = 10 replications), CRN produces estimates that are twice as precise in this example. If CRN were
used. the simulation analyst could conclude with 95% confidence that the mean cost difference between the
two policies is between $4414 and $4836.

12.1.4 Confidence Intervals with Specified Precision

Section 11.4.2 described a procedure for obtaining confidence intervals with specified precision. Confidence
intervals for the difference between two systems’ performance can be obtained in an analogous manner.

Suppose that we want the error in our estimate of 6, — 6, to be less than *e (the quantity € might be
a practically significant difference). Therefore, our goal is to find a number of replications R such that

H=1,,se(Y -Y,)Se€ (12.19)

As in Section 11.4.2, we begin by making R, 2 2 replications of each system to obtain an initial estimate of
s.e.(Y,—Y, ). We then solve for the total number of replications R = R needed to achieve the half-length
criterion (12.19). Finally, we make an additional R — R, replications (or a fresh R replications) of each system,
compute the confidence interval, and check that the half-length criterion has been attained.

Example 12.1: Continued
Recall that R, = 10 replications and complete synchronization of the random numbers yielded the 95%
confidence interval for the difference in expected response time of the two vehicle-inspection stations in
Inequality (12.18): this interval can be rewritten as 0.4 £ 0.90 minutes. Although system 2 appears to have
the smaller expected response time, the difference is not statistically significant. since the confidence interval
contains 0. Suppose that a difference larger than +0.5 minute is considered to be practically significant. We
therefore want to make enough replications to obtain a H < e =0.5.

The confidence interval used in Example 12.1 was D+ Larag-190 1 Ko » with the specific values D = 0.4,

R, =10, t,ys, =2.26 and S =1.7. To obtain the desired precision, we need to find R such that

S

Toin
Zar2k1”p o
JR

Therefore. R is the smallest integer satisfying R = R and

R> trx/Z‘RflSD ~
a €

Since 1,y . S1,,5 > @conservative estimate for R is given by

R> fg/:.kﬁlsn i
B €
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Substituting 7, <, = 2.26 and S; = 1.7. we obtain
7 96)° y
RT3 03
(0.5)

implying that 35 replications are needed. 25 more than in the initial experiment.

12.2 COMPARISON OF SEVERAL SYSTEM DESIGNS

Suppose that a simulation analyst desires to compare K alternative system designs. The comparison will be
made on the basis of some specified performance measure. 6. of system 4, for i = 1.2,.... K. Many differ-
ent statistical procedures have been developed that can be used to analyze simulation data and draw statisti-
cally sound inferences concerning the parameters 6. These procedures can be classified as being either
fixed-sample-size procedures or sequential-sampling (or mudristage) procedures. In the first type. a prede-
termined sample size (i.c.. run length and number of replications) is used to draw inferences via hypothesis
tests or confidence intervals. Examples of fixed-sample-size procedures include the interval estimation of
a mean performance measure (Section 11.3) and the interval estimation of the difference between mean
performance measures of two systems [as by Expression (12.1) in Section 12.1 |. Advantages of fixed-
sample-size procedures include a known or easily estimated cost in terms of computer time before running
the experiments. When computer time is limited. or when a pilot study is being conducted, a fixed-sample-size
procedure might be appropriate. In some cases. clearly inferior system designs may be ruled out at this early
stage. A major disadvantage is that a strong conclusion could be impossible. For example, the confidence
interval could be too wide for practical use. since the width is an indication of the precision of the point
estimator. A hypothesis test may lead to a faiture to reject the null hypothesis, a weak conclusion in general.
meaning that there is no strong evidence one way or the other about the truth or falsity of the null hypothesis.

A sequential sampling scheme is one in which more and more data are collected until an estimator with
a prespecified precision is achieved or until one of several alternative hypotheses is selected, with the prob-
ability of correct sclection being larger than a prespecitied value. A two-stage (or multistage) procedure is
one in which an initial sample is used to estimate how many additional observations are needed to draw
conclusions with a specified precision. An example of a two-stage procedure for estimating the performance
measure of a single system was given in Section 11.4.2 and 12.1 4.

The proper procedure to use depends on the goal of the simulation analyst. Some possible goals are the
following:

L. estimation of each parameter. 6;:

2. comparison of each performance measure, 6. to a control, 6, (where 6, could represent the mean
performance of an existing system);

3. all pairwise comparisons. 0, - 6. tori .

4. selection of the best 6 (largest or smallest).

The first three goals will be achieved by the construction of confidence intervals. The number of such
confidence intervals is C=K. C=K - 1, and C = K(K — 1)/2. respectively. Hochberg and Tamhane [1987]
and Hsu [1996] are comprehensive references for such multiple-comparison procedures. The fourth goal
requires the use of a type of statistical procedure known as a multiple ranking and selection procedure.
Procedures to achieve these and other goals are discussed by Kleijnen [1975, Chapters 11 and V|, who also
discusses their relative merit and disadvantages. Goldsman and Nelson | 1998 and Law and Kelton {2000
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discuss those selection procedures most relevant to simulation. A comprehensive reference is Bechhofer,
Santner. and Goldsman | 1995]. The next subsection presents a fixed-sample-size procedure that can be used

related procedures to achieve goal 4.

12.2.1 Bonferroni Approach to Multiple Comparisons

Suppoxu that C confidence intervals are computed and that the ith interval has confidence coefficient I -
Let S, be the statement that the ith confidence interval contains the parameter (or difference of two pdramc
ters) bemg estimated. This statement might be true or false for a given set of data, but the procedure leading
to the interval is designed so that statement S, will be true with probability 1 — c. When it is desired to make
statements about several parameters simultaneously, as in goals 1, 2 and 3. the analyst would like to have
high confidence that all statements are true simultaneously. The Bonferroni inequality states that

P (all statements S, are true. i=1,....C) 2 1—20(, =l-a, (12.20)

where o, = ztil a is called the overall error probability. Expression (12.20) can be restated as

P (one or more statements S is false, i =1, ...C) S a,
or equivalently.

P (one or more of the C confidence intervals does not
contain the parameter being estimated) < o,

Thus, o, provides an upper bound on the probability of a false conclusion. To conduct an experiment that
1nv01ves mal\mu C comparisons, first select the overall error probability, say o, = 0.05 or 0.10. The individ-
ual o may be chosen to be equal (o= a, /C), or unequal. as desired. The smaller the value of ¢, the wider
the /th confidence interval will be. For example if two 95% c.i’s (&, = a, = 0.05) are u)nstructed the over-
all confidence level will be 90% or greater (o,.= o, + &, = 0.10). It ten 95% c.i.'s are, constructed (e, 0. 05.
i=1.....10), the resulting overall confidence lcvd could be as low as 50% (&, 2 o, = 0.50), Whth is
far too low for practical use. To guarantee an overall confidence level of 95%. when 10 comparisons are
being made. one approach is to construct ten 99.5% confidence intervals for the parameters (or differences)
of interest.

The Bonferroni approach to multiple confidence intervals is based on expression (12.20). A major
advantage is that it holds whether the models for the alternative designs are run with independent sampling
or with common random numbers.

The major disadvantage of the Bonferroni approach in making a large number of comparisons is the
increased width of each individual interval. For example. for a given set of data and a large sample size. a
99.5% c.i. will be 2 05/ 005 = 2-807/1.96 = 1.43 times longer than a 95% c.i. For small sample sizes—say.
for a sample of size 5—a 99.5% c.i. will be 10,5 /1, ps4 = 5-598/2. 776 = 1.99 times longer than an indi-
vidual 95% c.i. The width of a c.i. is a measure of the precision of the estimate. For these reasons. it is
recommended that the Bonferroni approach be used only when a small number of comparisons are being
made. Twenty or so comparisons appears to be the practical upper limit.

Corresponding to goals 1. 2. and 3. there are at least three possible ways of using the Bonferroni

Inequality (12.20) when comparing K alternative system designs:

1. (Individual c.i.’s): Construct a 100(1 — @)% c.i. for parameter 6, by using Expression (11.12). in
which case the number of intervals is C = K. If independent sampling were used, the K c.i.’s would be
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mutually independent. and thus the overall confidence level would be (1 — )X (1 =o)X - X (1 =),
which is Targer (but not much larger) than the right side of Expression (l7.2()) This type of proce-
dure is most often used to estimate multiple parameters of a single system. rather than to compare
systems—and. because multiple parameter estimates from the same system are likely to be dependent.
the Bonferroni inequality typically is needed.

2. (Comparison 1o an existing svsiem): Compare all designs to one specific design—usually, to an
existing system: that is. construct a 100(] — o,)% c.i. for 6, —6,(i=2.3.....K), using Expression
(12.1). (System | with performance measure 6, is assumed to be the existing system). In this case.
the number of intervals is C = K — 1. This type of procedure is most often used to compare several
competitors to the present system in order to learn which are better.

3. (All pairwise comparisons): Compare all designs to each other—that is. for any two system designs
i # J, construct a 100(1 — o, ) 7 ¢.1. for 9 0 With K designs, the number of confidence intervals
u)mpulgd is C = K(K - l)/" The ovetall u)nhdcnue coetficient would be bounded below by
l—oa, =1- Z Zm ;7 (which follows by Expression (12.20)). It is generally believed that CRN will
make the true overall confidence level larger than the right side of Expression (12.20), and usually
larger than will independent sampling. The right side of Expression (12.20) can be thought of as
giving the worst case (i.c.. the lowest possible overall confidence level).

Example 12.4
Reconsider the vehicle-inspection station of Example 12.1. Suppose that the construction of additional space
to hold one waiting car is being considered. The alternative system designs are the following:

. existing system (parallel stations):

no space between stations in series:

one space between brake and headlight inspection only:
one space between headlight and steering inspection only.

W N

=

Design 2 was compared to the existing setup in Example 12.1. Designs 2. 3. and 4 are series queues, as
shown in Figure 12.1(b), the only difference being the number or location of a waiting space between two
successive inspections. The arrival process and the inspection times are as given in Example 12.1. The basis
for comparison will be mean response time, 0. for system i, where a response time is the total time it takes
for a car to get through the system. Confidence intervals for 6, — 6,. 6, - 6,. and 6, — 6, will be constructed,
cach having an overall confidence level of 95%. The run le nﬂth T, hds now been set at 40 hours (instead of
the 16 hours used in Example 12.1), and the number of erllCdIlt)n\ R of each model is 10. Common random
numbers will be used in all models, but this does not affect the overall confidence level, because. as men-
tioned. the Bonlferroni Inequality (12.20) holds regardless of the statistical independence or dependence of
the data.

Since the overall error probability is o, = 0.05 and C = 3 confidence intervals are to be constructed, let
o, = 0.05/3 = 0.0167 for i = 2,3.4. Then use Expression (12.1) (with proper modifications) to construct C = 3
confidence intervals with o= a,=0.0167 and degrees of freedom v= 10— 1 =9. The standard error is computed
by Equation (12.14). because common random numbers are being used. The output data ¥ _are displayed in

Table 12.5: Y is the \amplu mean response time for replication ron system i(r=1, ..., 10:i=1. 2, 3, 4). The
differences 1) =Y, =Y are also shown. together with the sample mean dlﬁercnus D averaged over all
replications a\ n }:qlmuon (12.12). the sample variances S,, and the standard error. By Expn,ssmn (12.1), the
three confidence intervals, with overall confidence coefficient at least | — o, are given by

D, -1, (D)< 6,-6 <D +1, ., se(D,). i=2734

‘RI
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Table 12.5 Analysis of Output Data for Vehicle Inspection System When Using CRN

Average Response Time Observed Difference
for System Design with System Design |
Replication, 1, 2. KR 4.
r Y Y Y Y, D, D, D,
1 63.72 63.06 57.74 62.63 0.66 5.98 1.09
2 322 31.78 29.65 31.56 0.46 2.59 0.68
3 40.28 40.32 36.52 39.87 -0.04 376 0.41
4 36.94 37.71 35.71 37.35 -0.77 .23 -0.41
36.29 36.79 33.81 36.65 -0.50 2.48 -0.36
6 56.94 57.93 51.54 57.15 -0.99 5.40 -0.21
3410 33.39 31.39 33.30 0.71 2.71 0.80
8 63.36 62.92 57.24 62.21 0.44 6.12 1.15
9 49.29 47.67 42.63 47.46 1.62 6.66 1.83
10 87.20 80.79 67.27 79.60 6.41 19.93 7.60
Sample mean, D, 0.80 5.686 1.258
Sample standard deviation. S, 2.12 5.338 2.340
Sample variance. S, 4.498 28.498 5.489
Standard error. S, /NR 0.671 1688 0.741
The value of 7, 5, =1,y = 2.97 is obtained from Table A.5 by interpolation. For these data. with 95%

confidence, it is stated that
-1.19<6,-6,<279
0.67<6 -6,<10.71
-094<6,-6,<346

The simulation analyst has high confidence (at least 95% ) that all three confidence statements are correct.
Notice that the c.i. for 6, — 6, again contains zero: thus. there is no statistically significant difference between
design 1 and design 2, a conclusion that supports the previous results in Example 12.1. The c.i. for 6, - 0,
lies completely above zero and so provides strong evidence that 6, — 6, > (—that is, that design 3 is bute
than design | because its mean response time is smaller. The c.i. for 9 — 6, contains zero. so there is no
statistically significant difference between designs 1 and 4.

If the simulation analyst now decides that it would be desirable to compare designs 3 and 4. more simulation
runs would be necessary, because it is not formally correct to decide which confidence intervals to compute
after the data have been examined. On the other hand. if the simulation analyst had decided to compute all
possible confidence intervals (and had made this decision betore collecting the data. Y ). the number of confi-
dence intervals would have been C = 6 and the three ¢.i’s would have been 1, ... , /rmm , =3.32/297=1.12
times (or 12%) longer. There is always a trade-off between the number of intervals (C) and the width of each
interval. The simulation analyst should carefully consider the possible conclusions before running the simulation
experiments and choose those runs and analyses that will provide the most useful information. In particular. the
number of confidence intervals computed should be as small as possible—preferably. 20 or less.



